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Abstract

The capacity of deep neural networks (DNNs) is rapidly growing to capture

intricate connections between entities within a dataset, while the size of the

dataset is also growing large and complex to encompass complicated informa-

tion from the real world. To represent such complex nature of the dataset,

embedding is commonly employed. Embedding is a vector projection of a

high-dimensional sparse feature space to a low-dimensional dense space that

preserves the semantics of the original features. This facilitates the ability of

DNNs to process the dataset efficiently as an input.

The growth in the size of both models and datasets results in a high over-

head of embedding operations leading to the overall slowdown in emerging AI

applications such as recommender systems, NLP, and computer vision. As a

result, these applications are facing three primary challenges: 1) an increase

in memory bandwidth requirement 2) an increase in computational demand

3) inefficiency of the hardware. This dissertation explores three different AI

applications experiencing these challenges and identifies different optimization

opportunities for different embedding operations. Based on the findings, this

dissertation introduces three proposals to address these challenges.

First, we present a new memoization framework called MERCI to opti-

mize the embedding reduction operation in recommender systems. This novel

memoization framework utilizes the co-appearing structure among features

in a real-world dataset. To accomplish this, we introduce Correlation-Aware

Variable-Sized Clustering, which identifies frequently co-appearing clusters of

features with high coverage and small memoization table size. We also propose

a feature remapping scheme to efficiently locate a partially reduced embedding

using a small number of instructions.

Second, we introduce a software-hardware co-design work called ELSA for

efficient self-attention operation which is widely used in natural language pro-

cessing (NLP), recommender systems, and computer vision and etc. ELSA
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proposes a novel approximate self-attention algorithm that efficiently iden-

tifies relationships that are unlikely to impact the final outcome and skips

computations related to them. We also introduce a hardware accelerator for

our approximation algorithm to gain substantial speedup and energy saving

by reduced computation.

Third, we present ANNA, a specialized architecture designed to acceler-

ate compression-based approximate nearest neighbor search (ANNS). ANNA

addresses the inefficiencies of commodity hardware (e.g., CPUs and GPUs)

with carefully designed hardware modules and fine-grained pipelining. ANNA

flexibly supports various search configurations and different ANNS libraries

from large companies like Meta and Google. Also, ANNA employs a memory

traffic optimization technique to support large-scale datasets more efficiently.

These proposals are highly relevant for practical use cases where models

are deployed in data centers to provide services to end users. They can as-

sist in meeting strict throughput and energy constraints associated with such

use cases. Additionally, the findings of this research can serve as a valuable

reference for future research and development in the field of AI.

Keywords: Machine Learning, Embedding Operation, Embedding Reduction,

Self-Attention, Compression-based Approximate Nearest Neighbor Search, SW/HW

Co-design, HW Accelerator, SW Optimization

Student Number: 2018-25551
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Chapter 1

Introduction

The capacity of deep neural networks (DNNs) is rapidly scaling to learn more

complex and implicit relationships between entities within a dataset. At the

same time, the size of the dataset is also growing rapidly to include varying and

complex information in the real world. Embedding is one of the most popular

data types widely used to represent such complicated nature of the dataset [21,

57, 138, 139, 168, 178]. It is a vector projection of high-dimensional sparse

feature space to a low-dimensional dense space that preserves the semantics

of the original features, for DNNs to process it easily as an input.

As a result of the rapid growth in the size of both models and datasets,

many emerging AI applications tend to spend a significant portion of run-

time on embedding operations. Embedding operations cause the applications

to face several critical challenges in providing quality results at high speed.

Considering practical use cases where models are deployed at the data cen-

ter to provide services to the end users, it is very important to solve these

challenges to meet the throughput and energy constraints on such use cases.

Below, we introduce three primary challenges that emerging AI applications

are facing, which are caused by embedding operations.

The first challenge is an increase in memory bandwidth consumption. The

development of memory bandwidth has been much slower than that of compu-

tation power. Recently, as the size of the model and the dataset grows rapidly,

emerging AI applications, which especially rely heavily on embedding opera-

tions, are consuming a lot of memory bandwidth making them to be easily

bounded by memory bandwidth. Thus, it is crucial to ensure the required

1



memory bandwidth at least because otherwise the performance is bounded by

the memory bandwidth no matter how many computing resources there are.

The second challenge is an increase in computation. As the amount of re-

quired computation grows in proportion to the size of the models and datasets,

the computational challenge is one of the emergent challenges to address con-

sidering recent trends of rapidly advancing AI. Additionally, the end of Moore’s

Law has made the cost of computation more expensive than in the past, mak-

ing the reduction of computation essential in terms of cost-saving.

The third challenge is the inefficiency of the hardware. Recently, hardware

has been getting bigger and more expensive to support complex features. How-

ever, emerging AI applications often do not take advantage of these resources,

resulting in a waste of cost and energy. Thus, producing customized hardware

accelerators, which are highly designed to be optimized for the given applica-

tion, could highly contribute to improving performance and energy efficiency.

The dissertation will explore three emerging AI applications that are fac-

ing these primary challenges. Different AI applications perform different em-

bedding operations to achieve different goals, leading to unique optimization

challenges. Through a detailed analysis, the dissertation characterizes each ap-

plication’s embedding operation and performs performance bottleneck analysis

to identify optimization opportunities. By identifying the challenge that each

operation faces, this dissertation aims to provide insights into the optimization

opportunities for emerging AI applications. The findings of this dissertation

can inform future research and development in the field of AI, particularly re-

garding the use of embedding to address the challenges posed by the increase

in model and dataset sizes.

First, we propose MERCI to optimize embedding reduction operation in

recommender systems. MERCI is a novel memoization framework that exploits

co-appearing structure among features in a real-world dataset. We introduce

Correlation-Aware Variable-Sized Clustering to identify clusters of frequently

co-appearing features of variable length with high coverage and small memo-

rization table size, as well as a feature remapping scheme to quickly locate a
2



partially reduced embedding with a small number of instructions.

Second, we propose ELSA to optimize self-attention operation, which is

widely used in natural language processing (NLP), recommender systems,

computer vision and etc. ELSA is a software-hardware codesign work that

proposes a novel approximate self-attention algorithm that efficiently identifies

relatively less important computations and hardware accelerator that supports

skipping such computations to maximize the benefit of approximation.

Lastly, we propose ANNA for compression-based approximate nearest neigh-

bor search (ANNS) acceleration. ANNA is a specialized architecture designed

carefully to overcome the inefficiencies in commodity hardwares (e.g., CPUs

and GPUs) and to scale well to support billion-scale ANNS. Also, ANNA

adopts a memory traffic optimization technique to reduce memory traffic.

The contribution of the dissertation is summarized as follows:

• We identify opportunities for applying memoization to efficient embed-

ding reduction for the first time (Chapter 3.2). Based on this, we in-

troduce Correlation-Aware Variable-Sized Clustering, a novel clustering

scheme that carefully weighs the benefits and costs of memoization to

form clusters of co-appearing features to memorize (Chapter 3.4).

• We present MERCI, a memoization framework for efficient embedding

reduction. MERCI utilizes Correlation-Aware Variable-Sized Clustering,

feature ID remapping for efficient query processing to maximize the ben-

efit of memorization (Chapter 3.3).

• We prototype MERCI on commodity platforms to demonstrate its effec-

tiveness in reducing the number of memory accesses 44% (29%), which

translates to substantial throughput gains 40.2% (28.6%) and energy sav-

ings at the expense of 8⇥ (1⇥) additional memory usage (Chapter 3.7).

• We present a novel self-attention approximation algorithm composed

of hardware-friendly similarity computation to substantially reduce the

amount of computation in the self-attention operation (Chapter 4.3).
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• We design ELSA, a specialized hardware accelerator that exploits oppor-

tunities for approximation and parallelism in the self-attention to signif-

icantly improve its performance and energy efficiency (Chapter 4.4).

• We compare ELSA with multiple representative self-attention-oriented

models to demonstrate that we can achieve substantial performance im-

provements (58.1⇥) and over three orders of magnitude improvements

in energy efficiency over the conventional hardware while maintaining

less than 1% loss in the accuracy metric. (Chapter 4.5).

• We provide an in-depth analysis of PQ-based ANNS and its inefficiencies

on conventional CPUs and GPUs (Chapter 2.3.3). Based on this, we

present ANNA, a specialized architecture for ANNS which can accelerate

compression-based ANNS algorithms such as Facebook Faiss [103] and

Google ScaNN [77] (Chapter 5.2).

• We introduce a memory traffic optimization technique, which substan-

tially reduces the memory traffic through data reuse (Chapter 5.3).

• We evaluate ANNA on multiple billion-scale workloads. ANNA improves

the energy efficiency by multiple orders of magnitude (97⇥+), the search

throughput (2.3-61.6⇥) and latency (4.3-82.1⇥) compared to the conven-

tional CPU and GPU (Chapter 5.4).

In summary, the proposals in this dissertation have significant practical im-

plications for the deployment of AI models in data centers to provide services

to end users. By addressing the challenges related to throughput and energy

constraints, these proposals can contribute to more efficient and effective AI

systems. Moreover, the insights gained from this research can serve as a valu-

able resource for future efforts to improve AI applications, particularly with

respect to embedding techniques and their application in handling large and

complex datasets. Ultimately, the outcomes of this work have the potential to

enable faster, more accurate, and more scalable AI systems.

4



Chapter 2

Background and Motivation

2.1 Embedding

A variety of modern machine learning and neural network algorithms represent

an entity as a learned high-dimensional vector or embedding. An embedding is

a relatively low-dimensional continuous vector that often represents a single

categorical feature.

For example, in natural language processing (NLP) models [57, 122], em-

bedding generally represents a word. Without embedding, each word in a cor-

pus would be assigned a dimension and is represented as a one-hot vector, re-

sulting in an extremely sparse vector. Even worse, such representation does not

contain semantic or syntactic relations between words; hence, in many cases,

a neural network (NN) model maps this sparse vector to a low-dimensional

dense vector that captures a word’s semantic meaning and keeps similar words

in the close distance as Word2Vec [135] does. Such processing makes it easier

for machine learning (ML) systems to infer the meaning of input.

Such a wide range of expressiveness of embeddings made them a common

data structure for an entity, especially in emerging AI applications. Another

use case of embedding is recommender systems [139, 178]. For instance, a rec-

ommender system at an online shopping website often employs a NN model

to learn the semantics of products and create an embedding for each prod-

uct. These embeddings are trained to extract the semantics of features (i.e.,

products); therefore, co-appearing products (e.g., a notebook and a pencil)

will appear relatively adjacent in the embedding space. These embeddings are

5



later used as categorical feature inputs to the recommender system. In prac-

tice, modern recommender systems utilize an extensive range of embeddings

for different categorical features. One example of a user-related categorical

feature is a set of products a user has recently browsed.

Also, other use cases include conventional search engines such as Microsoft

Bing [2] and multimedia search services where a user provides image or audio

input to find similar ones. In such search applications, an entity could indicate

a document, audio, image [21, 166], or video [134].

2.2 Embedding Operations

Various emerging AI applications adopt embeddings for different purposes. For

each purpose, embeddings are processed differently with different operations.

In this section, we go through how each operation works.

2.2.1 Embedding Reduction

Embedding reduction is widely used in various applications. A typical use case

is a personalized recommender system where it performs embedding reduction

to represent users or products. For instance, in a recommender system for an

online shopping website, each product on sale can be treated as a feature and

be represented with distinct embedding. An online user could be represented

with multiple categories (e.g., age, gender, location, browsing history, etc.).

In many cases, multiple features can constitute a single categorical variable.

For example, browsing history may have multiple features in cases where a

user has multiple recently browsed products or multiple favorite brands. To

represent these categories as a single embedding vector, embedding reduction

operation is performed. This operation loads an embedding vector for each

feature (e.g., a single product), and performs a reduction operation (e.g., sum,

average, max, inner product) on them.

In NLP models, embedding reduction generates a sentence or a document

embedding by aggregating embedding vectors for words in a given sentence or

6



1 // N: Number of embeddings
2 // D: Dimension of each embedding vector
3 float emb_table[N][D];
4 def embedding_reduction (vector<int> query[B], float &res[B][D]):
5 for qid=0 to B−1:
6 for i=0 to query[qid].size()−1:
7 int cur_feature = query[qid][i];
8 float[D] embedding_vec = emb_table[cur_feature];
9 /* Embedding Reduction */

10 for d = 0 to D−1:
11 res[qid][d] += embedding_vec[d];

Figure 2.1: Pseudocode of Embedding Reduction.

document [114]. Many other ML models also adopt embedding reduction [29,

39, 47, 76], and all popular NN frameworks like Tensorflow (embedding_lookup_

sparse(...)) [11], PyTorch (EmbeddingBag(...)) [150], and Caffe2 (SparseLen

gthsSum) [62] support this operation.

Figure 2.1 shows the pseudocode of embedding reduction with the sum

operator. The embedding reduction operation takes a set of queries (a batch

of queries) and iterates over each feature in each query (Line 6-7). For each

feature, it retrieves the corresponding embedding vector from the embedding

table (Line 8-9) and performs an element-wise reduction for the vector (Line

11-12). The result of the reduction for each query (i.e., res) is the output

of this operation. Note that, although sum reduction is adopted here, other

reduction operators such as min, max, or inner product can be employed.

2.2.2 Self-Attention

The attention mechanism is a relatively recently introduced neural network

primitive emerging as one of the most influential ideas in the deep learning

community. This mechanism allows neural networks (NNs) to identify the

information relevant to the specific input and decide where to attend. For

example, this mechanism can be used to identify the portion of the informa-

tion that is relevant to the query from an extensive collection of data (e.g.,

knowledgebase, image). One specific case of the attention mechanism is the

self-attention mechanism, where the attention mechanism is used to identify

7
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Figure 2.2: Self-attention Mechanism.

the relations among input data. Since its first introduction in the seminal paper

Attention Is All You Need [188] that presents the Transformer NN architec-

ture, the self-attention mechanism has been widely used to lead the break-

throughs in the field of natural language processing (NLP). Self-attention-

oriented NLP models from major AI companies such as Google BERT [57],

Meta RoBERTa [122], OpenAI GPT2/3 [27, 155], NVIDIA MegatronLM [168],

and Microsoft Turing-NLG [163] established the state-of-the-art results for var-

ious NLP tasks. In addition to natural language processing, the self-attention

is widely used for computer vision [22, 45, 149, 206] and recommendation

systems [63, 107, 171, 178, 214, 215] as well.

Self-attention is essentially an operation that identifies the relations within

the input entities, and Fig. 2.2 presents the required computations for it. For

each input entity, three different d-dimensional dense vector representations

need to be provided: query, key, and value. Assuming the input has n en-

tities, n vectors of d dimension are grouped to form the query matrix (Q),

the key matrix (K), and the value matrix (V) each having n⇥ d dimensions.

Throughout the paper, we call row vectors of these matrices queries, keys,

and values, respectively. 1 The very first step of self-attention is similarity

computation, which computes the dot product similarity between each query

vector and each key vector. For this purpose, the query matrix is multiplied

with the transposed key matrix (QK
T ). This results in n⇥ n matrix (i.e., at-

tention score matrix S), where sij represents the similarity (i.e., dot product)

between the ith query and the jth key vector. Note that some implementa-

8



tions often called scaled self-attention divide the resulting matrix by a scalar

constant. 2 The second step is the softmax normalization for each row of

the attention score matrix (s0
ij

= e
sij/

P
m
e
sim). 3 The final step computes

the output of this operation for each query vector by computing the weighted

sum of value matrix (V) rows utilizing the corresponding normalized atten-

tion scores as weights. This is equivalent to multiplying the matrix S
0 to V

(because rowi(O) =
P

n

m=1 s
0
im

· rowm(V ) , oij =
P

n

m=1 s
0
im

· vmj). The result

of this is an output matrix (O) where ith row represents the d-dimensional

vector that represents the outcome of the self-attention operation for the ith

input entity.

Application-Level Description. Each input entity (e.g., a word in a text)

gets three different vector representations (query, key, and value). Then, each

entity uses its query representation to find the set of other entities that are

the most relevant to the current entity. For this purpose, the dot product

similarity between the query representation (of the current entity) and the

key representation of other entities are computed, then softmax-normalized.

Since the softmax function is a differentiable approximation of the argmax

function, this step is effectively selecting a few most similar entities to the

current entity. Finally, the value representations of the selected entries are

summed up utilizing the softmax-normalized attention score as the weights.

This process is repeated for each input entity, and the output is passed to the

next layer in a NN model. In NLP models, this operation is used to identify

the specific semantic relation between tokens (e.g., words). For example, a

self-attention head (i.e., sub-layer) in a layer lets the direct objects to attend

their verbs, or noun modifiers to attend their nouns [43].

2.2.3 Product Quantization (PQ) Similarity Search

Similarity search is a task of finding top-k embeddings in a given set (i.e.,

database vectors) that are the most similar to a query embedding vector in

the vector space. It is also called the nearest neighbor search (NNS) problem.

The most popular application of NNS is recommender systems. For example,
9



YouTube recommender systems first utilize NNS to identify a set of candi-

date videos for a specific user and then use a separate, heavy deep neural

network to select top recommendations [47]. Similarly, NNS is often used to

efficiently identify a set of candidates [8] for CTR (Click-Through-Rate) pre-

diction models, such as Meta DLRM [140], Google DCN [192], and Alibaba

BST [33]. Moreover, similarity search is used for conventional search engines

such as Microsoft Bing [2], and can also be used for multimedia search services

where a user provides image or audio input to find similar ones.

The broad applicability of similarity search has motivated many researchers

in academia and industry to explore various similarity search algorithms. For

example, Meta maintains a similarity search library named Faiss [103] and

Google recently released a similarity search library named ScaNN [77]. Mi-

crosoft [38], Yahoo Japan [7] also have their own similar search libraries.

Similarity Metrics. Various similarity functions can be used to define the

similarity between vectors. Among them, the most common similarity metrics

are inner product similarity and L2 distance similarity shown in the equation

below.

sip(q, x) =
P

D�1
i=0 q[i]x[i] = kqkkxk cos ✓ (Inner Product)

sL2(q, x) = �
P

D�1
i=0 (q[i]� x[i])2 (L2 Distance)

Inner product is one of the most popular similarity metrics. Here, a sim-

ilarity s(q, x) between two D-dimensional vectors q and x is defined as the

dot product of those two vectors. This metric is used for computing the sim-

ilarity between embeddings, and the NNS using the inner product is called

Maximum Inner Product Search (MIPS). L2 distance between vector q and x

is computed as the sum of the squared value of each dimension’s difference.

Geometrically, this is the squared value of the length of the line connecting two

points defined by each vector. Since L2 distance is technically a dissimilarity

metric, the negative of squared L2 distance is utilized as a similarity metric,

as shown in the above equation. A common use case of L2 distance search is

image similarity search.
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Approximate Similarity Search. The most naïve way to perform a sim-

ilarity search is to compute the similarity between the query vector and all

database vectors, then sort the similarities to obtain k vectors with the highest

similarity. Assuming N database vectors having D dimensions, this requires

ND multiply-and-add operations and 2ND bytes memory accesses, assuming

16-bit datatype for each vector element. The cost of computation and memory

accesses becomes prohibitive when N is large (e.g., a billion). To avoid this

problem, many approximate similarity search algorithms (ANNS) have been

proposed [58, 61, 77, 93, 96, 103, 129]. Such algorithms can significantly reduce

the amount of computation as well as the memory accesses at the expense of

a slight reduction in search accuracy.

There exist various ANNS algorithms such as hash-based ones [52, 170],

graph-based ones [87, 129, 211], and compression-based ones [77, 100, 103].

Among these solutions, compression-based ones are the most popular choice for

billion-scale search scenarios. Graph-based ones and hash-based ones are very

effective for million-scale searches (e.g., finding similar movies), but they are

not well-suited for billion-scale searches where their memory requirement (i.e.,

whole dataset as well as their large index structures) often exceeds the main

memory size. However, the main problem with those solutions is that they still

require all data as well as additional index structures to be resident in memory.

The dataset itself is 256GB, when N is a billion and D is 128. This only fits

in a relatively large single-node machine. Moreover, many ANNS algorithms

also require additional O(N) memory capacity for index structure [130].

To avoid such huge capacity requirements, compression-based ANNS al-

gorithms have been proposed. Such algorithms encode the original data in

a compressed form and utilize the compressed form to compute the similar-

ity between the query and the database vectors. Since these algorithms do

not require the original, uncompressed vectors to be kept in memory, they re-

quire much less memory capacity and are better suited for large-scale datasets.

Compression-based schemes have drawn a lot of attention from both academia

and industry for their capabilities to handle billion-scale searches effectively.
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Some recent work [35, 137, 204, 207] explores ways to optimize and refine

compression-based similarity search and major industry players like Google

and Meta have released their compression-based similarity search libraries as

open-source software [77, 103]. Considering the ever-increasing data size, we

expect the compression-based schemes to continue to be the most dominant

scheme in the foreseeable future.

2.2.3.1 Product Quantization (PQ)
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Figure 2.3: Illustration of Product Quantization.

Encoding. A product quantization scheme encodes each database vector into

a compressed form as shown in Figure 2.3. For this purpose, it first divides

a vector into multiple sub-vectors. For example, a D-dimensional vector x is

represented as a concatenation of M sub-vectors x0, x1, x2, ..xM�1 where each

xi is a D/M -dimensional vector. In the figure, 1 we assume D=6 and M=3,

so each sub-vector is a 2-dimensional vector. Then, the product quantization

scheme encodes each sub-vector into an identifier and represents the vector as a

concatenation of identifiers. To obtain a corresponding identifier for each sub-

vector, the product quantization scheme uses a set of vectors named codebook.

A separate learning process obtains codebooks B0, ..., BM�1, one for each D/M

dimension, and each codebook consists of k
⇤ codeword vectors, each having

D/M dimension. The figure shows M=3 codebooks of k⇤=4 codeword vectors

each. There exist various algorithms to obtain codebooks [67, 77, 103, 112],
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and the quality of the codebook affects final search accuracy. Using a code-

book Bi, a sub-vector xi is encoded into an identifier. 2 Specifically, product

quantization scheme first computes the similarity between a sub-vector xi and

each codeword vector in the codebook Bi (i.e., Bi[0], ...Bi[k⇤�1]). Eventually,

the codeword with the highest similarity is selected.

Assuming Bi[j] is selected, xi is now represented as ei(x) = j. 3 Repeat-

ing this process for each sub-vector xi, the vector x is now represented as a

concatenation of x0 = e0(x), ..., eM�1(x) where 0  ei(x) < k
⇤. Assuming that

the original datatype is 2 bytes (float16) per vector element, the original vec-

tor requires 2D bytes storage. With this encoding, each ei(x) is represented

with log2 k
⇤ bits, and the total number of bytes for the encoded vector x

0 is

M log2 k
⇤
/8 bytes. In the figure, original vector x requires 12 bytes storage,

but with encoding, it only requires less than 1 byte (e.g., 6/8 bytes). While

the choice of smaller M and k
⇤ significantly improves the compression rate,

too much compression can negatively affect search accuracy.

Approximate Similarity Computation. To compute the approximate sim-

ilarity between each encoded vector x
0 and a given query q, the PQ scheme

utilizes the encoded identifier ei to obtain the corresponding codeword from

codebook Bi. Then, the decoded vector is represented as a concatenation of

B0[e0(x)], ...BM�1[eM�1(x)] where Bi[ei(x)] is a D/M -dimensional vector. The

similarity between this D-dimensional decoded vector and the query vector

(q0, ...qM�1 where qi is a D/M -dimensional sub-vector) is computed as shown

below. This process is repeated for all encoded vectors, and the top-k most

similar vectors can be obtained.

sip(q, x
0) =

P
M�1
i=0 qiBi[ei(x)] (Inner Product)

sL2(q, x
0) = �

P
M�1
i=0 kqi �Bi[ei(x)]k2 (L2 Distance)

Efficient Similarity Computation with Memoization. In the above equa-

tions, an inner product similarity computation requires D multiplications and

D�1 additions. Similarly, a L2 distance similarity computation requires D

subtractions, D multiplications, and D�1 additions. These are repeated for
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all N database vectors. Carefully inspecting the above equations, we can see

that it is more efficient to memoize {qiBi[0], ... , qiBi[k⇤ � 1]} (inner product)

or {�kqi � Bi[0]k2, ... ,�kqi � Bi[k⇤ � 1]k2} (L2 distance), and reuse them

across different database vectors. Assuming those k
⇤ values are memoized in

a lookup table Li (for all 0  i < M), the above similarity computation equa-

tion changes to the following for both the inner product similarity and the L2

distance similarity.

s(q, x0) =
P

M�1
i=0 Li[ei(x)]

With this memoization, computing the similarity between q and x
0 only

requires M lookup table references and M � 1 additions. To construct the

lookup table for inner product similarity, k
⇤
D multiplications and k

⇤(D �

1) additions are necessary. Similarly, the L2 distance similarity computation

requires k
⇤
D subtractions, k⇤D multiplications, and k

⇤(D � 1) additions. In

both cases, the required capacity is 2Dk
⇤ bytes since there exist M lookup

tables and each lookup table Li has k
⇤ entries where each entry stores D/M -

dimensional sub-vector requiring 2D/M bytes storage. Note that the size of

the lookup table or the amount of computation for construction of the lookup

table is independent of N . With a large number of database vectors, the lookup

table construction overhead can easily be amortized.

2.2.3.2 Two-level Product Quantization ANNS

The base product quantization scheme presented in the previous section i)

reduces the memory capacity requirement and ii) reduces the amount of com-

putation via memoization. Still, it does not reduce the number of database

vectors that the similarity computation needs to be performed. As a result,

the total search time is still proportional to N . To address this limitation,

many popular similarity search implementations adopt a two-level product

quantization scheme (also called inverted-index-based product quantization)

that substantially reduces the number of database vectors for which the dis-

tance computation needs to be performed.
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Encoding. In this scheme, the database vectors are first grouped into multi-

ple clusters using a clustering algorithm. Technically, any clustering algorithm

can be utilized, but kmeans is the most popular choice. After clustering, a rep-

resentative point from each cluster is decided. A popular way to obtain this

representative point is simply using the centroid of all vectors within a cluster.

For cluster j, we call the centroid vectors as c(j) 2 R
D. Then, for each database

vector x in cluster j, the residual r(x) = x� c
(j) is computed. Finally, r(x) is

encoded using the product quantization scheme explained in Chapter 2.2.3.1

to obtain r(x)0 which is a concatenation of e0(r(x)), e1(r(x)), ..., eM�1(r(x)).

Then, these encoded vectors belonging to this specific cluster are stored to-

gether, along with the cluster centroid vector c
(j).

sip(q, x
0) = sip(q, c

(j) + r(x))

= q · c(j) +
P

M�1
i=0 qiBi[ei(r(x))]

= q · c(j) +
P

M�1
i=0 Li[ei(r(x))]

sL2(q, x
0) = sL2(q, c

(j) + r(x)) = sL2(q � c
(j)

, r(x))

= �
P

M�1
i=0 k(qi � c

(j)
i

)�Bi[ei(r(x))]k2

=
P

M�1
i=0 Li[ei(r(x))]

Similarity Computation. Such a cluster-wise encoding scheme changes the

way to compute the similarity, as shown in the equations above. Li for inner

product similarity stores {qiBi[0], ..., qiBi[k⇤�1]} and Li for L2 distance simi-

larity stores {�k(qi � c
(j)
i

)�Bi[0]k2, ...,�k(qi � c
(j)
i

)�Bi[k⇤�1]k2}, where c
(j)

is one of C . For the inner product similarity, the contents of the lookup table

are invariant to the chosen clusters and the term q · c
(j) needs to be added at

the end. On the other hand, for the L2 distance similarity, the contents of the

lookup table are variant to the chosen clusters.

Search Process Step 1 - Cluster Filtering. Figure 2.4 illustrates three

steps of two-level product quantization and Table 2.1 shows the notations

used for two-level product quantization throughout the thesis. Given a query

vector q, the first step to finding similar vectors is cluster selection. During
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Table 2.1: Notation for Two-level Product Quantization ANNS.

Notation Description

N # of database vectors

D Dimension of database vectors

M # of sub-vectors

x[i] ith element of vector x

x[i] ith sub-vector of vector x

B0...M�1 Codebook for each sub-vector

k
⇤ # of codewords

ei(x) Encoded identifier of vector xi

C Set of centroids

c
(i) Centroid vector of cluster i

W Set of selected centroids

c
(s) Selected centroid in W

L0...M�1 Lookup table for each sub-vector

this step, it computes the similarity between vector q and all centroid vectors

(i.e., c(0), c(1), ..., c(|C|�1)), and then find the W most similar centroids as shown

in the below equation. The set of selected centroids is denoted as W. In the

figure, the most similar (in terms of L2 distance) centroids are c
(0) and c

(2) and

thus W = {c(0), c(2)}. Essentially, this step excludes vectors belonging to the

cluster with centroids that are not similar to the query and hence effectively

reduces the total number of candidates.

Search Process Step 2 - Lookup Table Construction. Once the nearby

centroids are identified, the algorithm constructs the lookup table. This process
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slightly differs for the two metrics. First, for the inner product similarity, the

contents of the lookup table Li (see sip in the above equation) are independent

of the selected centroid c
(s), where c

(s) is one of the selected clusters in W ,

and thus it is sufficient to construct the lookup table once and reuse it for all

clusters. On the other hand, the contents of the lookup table (see sL2 in the

above equation) are dependent on the selected centroid c
(s) and thus, the table

needs to be constructed for each cluster. The figure assumes D=6, M=3 and

L2 distance case and illustrates creating a lookup table for cluster 0.

Search Process Step 3 - Similarity Computation. Once the lookup table

is ready, the similarity computation between the query vector q and database

vectors in the selected clusters is performed. With the lookup table, each

similarity computation is simply M additions (inner product) or M�1 additions

(L2 distance). The figure shows the process of computing the similarity of

vector x. Assuming encoded vector e(r(x)) is (1, 0, 2), it computes similarity by

summing up L0[e0(r(x))]+L1[e1(r(x))]+L2[e2(r(x))] which is 5. This process

is repeated for all vectors in the selected clusters, and the top-k most similar

vectors are selected and then returned. Overall, this PQ-based ANNS can i)

substantially reduce the number of database vectors inspected by cluster-level

filtering and ii) can efficiently compute the approximate similarity between

the database vector and the query with memoization.

2.3 Bottleneck Analysis for Embedding Operations

Table 2.2: Summary of Embedding Operations.

Applications Embedding Operation Challenge

Recommender System Embedding Reduction
High Memory Bandwidth
Requirement (Challenge 1)

Transformer-based
Model (NLP, CV) Self-Attention

High Computation
Requirement (Challenge 2)

Recommender System
Search Engine Similarity Search

HW Inefficiency
(Challenge 3)
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Table 2.2 shows the summary of emerging AI applications and their em-

bedding operations. Each embedding operation faces different challenges as

discussed in Chapter 1, showing different performance bottlenecks.

Embedding reduction operation, which is primarily used in recommender

systems, is known to be memory-bound with a relatively small amount of arith-

metic computation (i.e., having a low arithmetic intensity [79, 110]) where the

performance is determined by system memory bandwidth. This operation per-

forms sparse indexing, which generates a large number of irregular memory

accesses. Since off-chip memory accesses are more expensive than on-chip com-

putation in terms of latency and energy consumption [34, 85, 191], it is critical

to reduce this high cost of memory accesses for efficient embedding reduction.

Self-attention operation is one of the most widely used operations in neural

network models for NLP, computer vision and etc. In contrast to its strong

ability, it is a costly operation that requires an amount of computation that

quadratically increases with the number of entities involved in this opera-

tion. Its high computational cost becomes a limiting factor for deployment.

For example, many existing NLP models such as Google BERT limit the self-

attention to be applied for up to 512 tokens (e.g., words) to avoid excessive

performance and energy overhead. When the input text has more than 512 to-

kens, the input text needs to be divided into multiple segments (each with up

to 512 tokens), and self-attention is separately applied for each segment. Un-

fortunately, such a scheme makes NLP models unable to capture the relation

between two tokens that do not belong to the same segment.

Compression-based similarity search operation is also a well-known oper-

ation primarily used for recommender systems, search engines and etc. This

operation on conventional hardware (CPU or GPU) is suboptimal due to its

specific computation pattern which heavily utilizes memoization. For CPUs,

the sources of inefficiency are twofold: (1) application’s lack of control over the

on-chip memory usage makes it difficult to keep the memoization results and

frequently reused data on-chip, incurring further main memory accesses, and

(2) CPU’s ability to support dynamic control flow or dynamic extraction of
18



1 // for i = 0 to query[qid].size()−1;
2 REDUCTION:
3 // %rcx: feature index i; initialized with 0
4 // %r9: query[qid].size()
5 FEAT_LOOP:
6 // for d = 0 to D−1:
7 // res[d] += embedding_vec[d];
8 ...
9 88.64% vmovups (%rsi), %ymm2

10 6.96% vadddps (%rax), %ymm2, %ymm0
11 1.68% vmovups %ymm0, (%rax)
12 ... // loop unrolling
13 FEAT_REPEAT:
14 inc %rcx
15 cmp %rcx, %r9
16 jne FEAT_LOOP

Figure 2.5: Instruction-level Runtime Breakdown for Embedding Reduction

Using Amazon-Books Dataset1.

instruction level parallelism incurs extra energy overhead on ANNS scheme,

which has relatively static control flow and easy-to-extract parallelism. On

the other hand, on GPUs, (1) shared memory usage from the memoization

table limits the GPU parallelism (i.e., the number of thread blocks scheduled

for each streaming multiprocessor (SM)) and incurs resource underutilization,

and (2) the low arithmetic intensity computation pattern results in gross un-

derutilization of GPU computation capability.

2.3.1 Embedding Reduction

Embedding reduction has a small number of arithmetic computations com-

pared to the number of memory reads it generates. In a CPU, which is a com-

mon deployment platform to accommodate a large embedding table [79, 88,

110], SIMD optimization (e.g., Intel AVX) is usually applied. Figure 2.5 shows

the instruction-level profiling results of the embedding reduction operation on

the CPU using perf annotate. The profiling results demonstrate that embed-

ding reduction operation is an extremely memory bandwidth-bound operation

as most of the runtime is spent on the SIMD load instruction (vmovups). In
1See Chapter 3.7.1 for details on datasets.
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this code, the SIMD add instruction is very efficient with wide vector pro-

cessing, but our internal profiling result shows that memory accesses to the

embedding table yield a high cache miss rate (e.g., 52.8%) in L3 cache despite

the existence of temporal locality to a certain degree. This inefficiency is due

to the following reasons. First, embedding reduction accesses embedding ta-

ble with sparse index; thus, cache miss rate increases. Second, the embedding

tables are often much larger than L3 cache sizes. For example, the embed-

ding table for one million 256B embeddings takes 256MB, which is an order of

magnitude larger than a typical L3 cache size. There are cases where multiple

embedding tables are accessed at the same time by different threads [110], thus

further increasing the memory pressure. Third, there are other data structures

that contend for the cache space (e.g., query, res). Finally, between batches

of embedding reduction, other layers of the DNN model may be executed to

evict most of the embedding vectors from the cache hierarchy.

In fact, the embedding reduction operation is the primary performance

bottleneck in many NN models. One example is Meta’s DLRM [139], in which

their profiling results [80, 110] show that this operation accounts for 50% to

75% of the total runtime in their models (i.e., RMC1, RMC2). Furthermore,

with a scaling of the dataset and the adoption of specialized DNN accelerators

to shrink the portion of the compute-intensive layers, the bottleneck is likely

to be more critical in the future.

2.3.2 Self-Attention

As described in Chapter 2.2.2, the self-attention mechanism consists of three

steps, 1 similarity computation, 2 softmax normalization, 3 weighted sum.

The first similarity computation is matrix multiplication, which requires n
2
d

multiply-and-accumulate (MAC) operations (since it multiplies n ⇥ d matrix

with d ⇥ n matrix). The second softmax normalization operation requires n
2

exponent operations, and the final weighted sum is also a matrix multiplication

that requires n
2
d MAC operations (n⇥ n matrix is multiplied with n⇥ d).

Fig. 2.6 shows the portion of the runtime spent on self-attention in popu-
20



Figure 2.6: Breakdown of the Runtime Spent for Self-attention Mechanism.

lar NN models. We run SQuADv1.1 dataset [159] for NLP models (BERT,

RoBERTa, ALBERT) and MovieLens-1M [86] for recommendation models

(SASRec, BERT4Rec) on NVIDIA V100 GPU [142]. The details of each work-

load are available in Chapter 4.5.1. The left side of the figure shows that

self-attention accounts for a significant portion (about 38%) of the runtime

across many existing self-attention-oriented NN models. Furthermore, the fig-

ure also shows that increasing n further than the published model parameter,

say, by 4⇥, makes the self-attention account for an even larger portion (about

64%) of the model runtime. Finally, note that several recent research works

on NLP models suggest that the portion of self-attention is going to increase

even further. For example, a recent research [198] demonstrates that extrane-

ous dimensions in the feedforward layers are unnecessary and removing them

hardly affects the model accuracy while significantly reducing the runtime of

the feedforward layers in Transformer-style models. The right side of the figure

shows that the runtime portion of the self-attention on these models reaches

about 73% when the feedforward layer dimension is reduced by 4⇥ [198]. In

addition, several recent proposals investigate the idea of replacing the feedfor-

ward layer in Transformer-style models with the self-attention [117, 176] for

better model accuracy. Such trends will make the self-attention take an even

larger portion of the total model runtime in the future.
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2.3.3 Product Quantization (PQ) Similarity Search

Recommender system is one of the representative use cases that utilize similar-

ity search. To deal with the constantly growing amount of information, modern

personalized recommender systems are generally composed of two stages: re-

trieval, also referred to as candidate generation, and ranking. In the retrieval

stage, thousands of potential candidates are retrieved from a vast dataset in

a fast and computationally efficient manner. In the ranking stage, retrieved

candidates are ordered using separate neural network models or complex al-

gorithms. Similarity search is employed during the retrieval stage to identify

potential candidates from large datasets.

Also, search engine [2, 197], online advertising and e-commerce (e.g., Face-

book Marketplace, Instacart, Walmart, Taobao) applications also consist of

retrieval and ranking stages. Likewise, they utilize similarity search for the re-

trieval stage. The Google Play application’s recommender system has on the

order of 10 ms for the end-to-end query serving time for both retrieval and

ranking stages [39]. Also, the retrieval stage for Taobao Product Search takes

approximately 10 ms [65, 120]. Due to such tight constraints for the end-to-

end query serving time, similarity search accounts for a considerable portion

of the overall query serving time.

An algorithm best suits the specific hardware if i) the hardware fully uti-

lizes the available compute resources while executing the algorithm, ii) the

hardware can maximize data reuse and iii) the hardware fully utilizes the

available memory bandwidth for data that needs to be loaded from memory.

Unfortunately, we find that this is not the case when we run PQ-based ANNS

on conventional hardwares.

GPU Implementation Analysis. We profile Meta Faiss [4, 103], one of the

most popular implementations of the PQ-based ANNS, for GPU on NVIDIA

V100 GPU. Overall, two kernels account for most (98%) of the query runtime.

The first kernel simply performs the approximate similarity computation using

memoization. Profiling the behavior of this kernel with Nvidia Nsight [9] tool
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and Nvidia Visual Profiler [10] reveals that this kernel fails to effectively utilize

the available GPU memory bandwidth as well as its floating-point units. The

kernel requires a relatively large amount of shared memory per block (32KB)

to store the lookup table, and this requirement limits the number of thread

blocks scheduled on SM to three since each SM has 96KB shared memory.

The low number of resident thread blocks per SM limits the GPU’s ability to

hide the memory latency via parallelism, which eventually leads to a reduction

in throughput. The second kernel selects top-1000 vectors having the largest

similarity out of all vectors whose similarities are computed in the previous

kernels. Despite many optimizations in Faiss [103], this kernel has limited

parallelism (i.e., small grid size), which prevents it from fully utilizing GPU

resources. Moreover, this operation only utilizes about 4% of the total FMA

units since this kernel is mostly about selecting top-scoring vectors without

performing much computation.

CPU Implementation Analysis. We analyze the performance characteris-

tics of Google ScaNN [77] and Meta Faiss [103] on Intel Skylake-X 8-core CPU.

For both cases, the system spends most of its time on a loop fetching encoded

vectors from the main memory and utilizes those data to read the lookup

tables and performs sum reduction of the data read from the lookup tables.

Although bottlenecks vary across configurations, we find two major sources of

performance degradation. First, the system is often bounded by the memory

bandwidth. Specifically, since an encoded vector is only utilized once per query

with no reuse, it does not benefit much from the CPU cache hierarchy and

consumes a large amount of system bandwidth. In certain configurations where

the memory bandwidth is not a bottleneck, the primary source of performance

degradation is its inability to deal with sub-byte data types effectively. Specif-

ically, when k
⇤=16, a single vector element is encoded as a 4-bit integer. Since

the CPU does not have support for the 4-bit data type, it continuously uti-

lizes shift instructions (e.g., VPSRLW) to process 4-bit data. Such use of excess

instructions ends up degrading the processor’s effective throughput.
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Chapter 3

Efficient Embedding Reduction on
Commodity Hardware via Sub-Query
Memoization

3.1 Overview

MERCI is a novel memoization framework for an efficient embedding reduction

on the commodity hardware. Based on the observation that there often exists a

correlation structure among features in a real-world dataset, we present a new

optimization opportunity in embedding reduction via memoization technique.

To maximize the benefit of memoization, we propose fine-grained (sub-query)

memoization to perform partial reduction when processing a query. For this

purpose, we introduce Correlation-Aware Variable-Sized Clustering to identify

clusters of frequently co-appearing features of variable length with high cov-

erage and small table size, as well as a feature remapping scheme to quickly

locate a partially reduced embedding with a small number of instructions.

3.2 Opportunities for Sub-query Memoization

Memoization [133] is a classic technique that stores the result of computation

for an input (query) and reuses it when the same query arrives again. Memo-

ization leverages space-time trade-offs and is the most effective when a small

subset of inputs is likely to occur repeatedly. Memoization can be an effective

solution to reduce memory accesses in embedding reduction by replacing N

embedding table lookups with a single memoization table lookup, where N is

the number of the embeddings that the given query should aggregate. However,
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Figure 3.1: Correlation Heat Map for Product Pairs of Top 150 Items in Ama-

zon Review Dataset.

this coarse-grained (i.e., query granularity) memoization has limited coverage

as memoization can be applied only when the exact same query arrives again.

Instead, we identify new opportunities for fine-grained (i.e., sub-query)

memoization to enable partial reduction by exploiting the correlation structure

that exists in many real-world categorical features. This partial reduction is

possible as a reduction operator (e.g., sum) is commutative and associative by

definition. For example, if a query contains a user’s recently browsed items,

there is a high probability that if notebook appears in the query, then pen

would also appear together. Similarly, (notebook, pencil) and (pencil, eraser)

are co-appearing pairs that are frequently browsed. In contrast, (pants, pencil)

and (shampoo, apple) are pairs that are much less likely to appear together. We

can exploit such patterns and memoize the partial reduction for the frequently

co-appearing features to replace two or more memory accesses with single

memory access.

Figure 3.1 illustrates such opportunities indeed exist in a real-world dataset.

This Amazon Review dataset contains lists of items that are bought/viewed

together, which are commonly utilized as a categorical input of the recom-

mender system. The heat map depicts the pair-wise correlation of the Top 150

frequently appearing items in this dataset. Thus, both X and Y-axis enumerate

the 150 items, and a dot in the figure quantifies the correlation of a particular

item pair in the range of zero (low, white) to one (high, red). This heat map

shows pairs of items jointly appearing frequently in the lists (queries), which

25



can be excellent targets for memoization. Although the figure only shows the

pair-wise co-appearance, there often exists a cluster of co-appearing features

(items) that have a high chance of appearing together. Thus, we propose to

exploit this correlation structure to perform memoization at a sub-query gran-

ularity (as few as two embeddings) to provide much greater coverage than the

coarse-grained memoization scheme at a query granularity.

3.3 MERCI Overview

Although conceptually simple, building a performant memoization system for

embedding reduction is a challenging task. If done naïvely using a dense

array, the cost of memoization can nullify its benefit. For example, stor-

ing partial sums of all possible combinations would not be possible due to

memory constraints; for N embeddings, the required memory space is 2N ⇥

{Embedding Vector Size} where N often exceeds a million in many popular

NN models. Utilizing a sparse data structure (e.g., a sparse hash table) for

maintaining the memoized values and only storing partial sums of frequently

co-appearing features can solve this problem, but triggers considerable addi-

tional memory access to retrieve a memoized value.

MERCI proposes a way to get the best of both approaches. It moves

through two phases that we call offline clustering and online query processing.

Figure 3.2 shows the overall overview of MERCI.

Offline clustering. The offline clustering phase consists of two steps. 1

MERCI first partitions N features into a set of coarse-grained, fixed-length

partitions called super-partitions by utilizing an existing hypergraph par-

titioning algorithm on the training dataset (Step 1). Each super-partition

contains features that are likely to appear together based on the history of

queries. Then, 2 MERCI applies Correlation-Aware Variable-Sized Cluster-

ing to each super-partition, dividing features in a super-partition into fine-

grained, variable-length clusters (Step 2). Finally, 3 MERCI creates a memo-

ization table that holds all possible partial sum combinations for each cluster.
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Figure 3.2: Overview of MERCI.

Chapter 3.4 describes the details of these steps.

Online query processing. MERCI utilizes the memoization table created

from the previous phase to serve incoming queries. Once a query arrives—for

example, one requiring access to the feature set of {2, 3, 4, 6, 7} as in Figure

3.2—MERCI first identifies which features belong to the same cluster. In this

example, features {2, 3, 4} belong to cluster A and {6, 7} to cluster B. Hence,

two memoized partial sums (embeddings) are retrieved (i.e., e2 + e3 + e4 and

e6 + e7) and summed up to generate the final output. While the baseline

scheme—performing embedding reduction without memoization—would have

to load five embeddings (i.e., e2, e3, e4, e6, e7), MERCI only loads two. Because

the embedding reduction is often memory bandwidth-bound, such reduction

in memory accesses can lead to performance improvement. Chapter 3.5 de-

scribes how the online query processing phase utilizes clusters to optimize the

memoization table and accelerate the embedding reduction at runtime.

3.4 MERCI Offline Clustering

3.4.1 Step 1: Hypergraph Partitioning

The first step of the offline clustering phase is coarse-grained, fixed-length

partitioning of all N features utilizing a hypergraph partitioning algorithm.

Hypergraph partitioning is a popular algorithm that aims to generate a speci-

fied number of equal-sized partitions while minimizing the number of accessed
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partitions for a given set of queries; that is, features in the same partition

have a high chance of occurring together. We first partition all N features into

equal-sized super-partitions of size S with an existing hypergraph partitioning

algorithm implementation called PaToH [30]. As N (number of features) can

often exceed millions in today’s NNs, the hypergraph partitioning algorithm

first reduces this large problem size to S, and the proposed fine-grained clus-

tering algorithm called Correlation-Aware Variable-Sized Clustering (Chap-

ter 3.4.2) is performed on each super-partition to manage the complexity.

While PaToH works well for our purpose, there exists a variety of different

hypergraph partitioning algorithms [30, 56, 106, 109, 165] with different time-

quality trade-offs [165], and there is no fundamental limitation in using a

different algorithm.

One question that might arise is whether we can use a hypergraph par-

titioning algorithm to create fine-grained clusters, instead of the proposed

two-step algorithm, as it also groups frequently co-appearing features. It may

be possible but suboptimal for the following reasons. First, it only generates

equal-sized partitions, which either cannot support a set of co-appearing fea-

tures larger than the (fixed) partition size or waste memory space for a smaller

set. The size of a group of the co-appearing features would vary. Our algorithm

can reflect diversity by generating clusters of sizes one to twenty or more. Sec-

ond, the hypergraph partitioning algorithm does not give a fine-grained knob

for memory constraints. Once the cluster size is set to S (embeddings), the

space overhead is fixed to N/S ⇥ (2S � 1)⇥{Embedding Vector Size}. On the

other hand, our algorithm can set memory limits in the granularity of less

than 1% of the original embedding table size. Thus, the hypergraph partition-

ing algorithm can reduce the search space while increasing the locality, but in

itself, it is not sufficient for our purpose.

3.4.2 Step 2: Correlation-Aware Variable-Sized Clustering

Once the hypergraph partitioning algorithm divides all N features into super-

partitions containing S features each, the next step is to apply Correlation-
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Aware Variable-Sized Clustering to each super-partition individually. It is a

clustering algorithm that aims to further divide the S features into fine-grained

variable-sized clusters such that the resulting memoization table yields the

maximum benefit for a given memory constraint. All possible combinations of

the partial sum within a cluster are then stored for memoization.

Sketch of the Algorithm. The Correlation-Aware Variable-Sized Clustering

algorithm is applied to all N/S super-partitions independently. Let ci be a set

of feature IDs that belongs to cluster i. Initially, we let each feature form a dis-

tinct cluster by itself (i.e., S clusters of size one). In this state, there is nothing

to memoize since no cluster has more than one feature. The algorithm then

selects and merges two clusters; to select these clusters, it considers both the

benefit (i.e., decrease in the expected number of memory accesses if merged)

and the cost (i.e., increase in memory usage if merged). This cost and benefit

are estimated using queries in the training set, as explained below. Once two

clusters are merged, the algorithm repeats the next iteration until it hits the

memory size constraint.

Estimating the Cost. Since all possible combinations of features in a cluster

are memoized, a cluster with a features occupies (2a�1)⇥{Embedding Vector

Size} of memory space. 2a�1 is the cardinality of power set (excluding empty

set) for a set with a elements. With this in mind, we can compute the memory

cost of merging cluster A having a features and cluster B with b features. The

newly formed cluster would require 2a+b � 1 partial sums to be stored; since

the original memory usage was 2a � 1 + 2b � 1, the increase in memory usage

(i.e., the cost of merge) is (2a+b � 2a � 2b + 1)⇥ {Embedding Vector Size}.

Estimating the Benefit. Merging two clusters improve the chance of features

in a query being in the same cluster (and hence memoized). Therefore, the

number of memory accesses for processing a query would likely decrease. The

amount of decrease is considered as the benefit of merging two clusters. The

queries in the training set are analyzed to estimate the benefit. To explain, we

define Q as the set of queries being analyzed, and I is an inverted index data

structure [48] for each cluster.
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Figure 3.3: Illustration of Computing Benefits for a Particular Merge Decision.

Q = {qi | i = 0, 1, ..., q}, Ii = {qj | 9fk 2 ci, s.t. fk 2 qj} (3.1)

Following the numbering in Figure 3.3, 1 Q = {q1, q2, q3, q4} is a set

of queries used for training, and each query is identified as a set of feature

IDs it accesses (e.g., f1, f2, ...), where each feature corresponds to a specific

embedding vector. 2 Using this information, an inverted index Ii is built and

maintained for each cluster i. Ii contains IDs of queries that contain at least

one feature belonging to cluster i. For instance, if f1 appears in q2 and q3, I1

becomes {q2, q3} as in Figure 3.3. 3 Then, the benefit of merging cluster c1

and c3 is computed as the cardinality of I1 \ I3, which is equivalent to the

number of queries that contain at least one feature from each of c1 and c3.

That is, if c1 and c3 are merged, c1
S
c3 would be memoized, and thus queries

q2 and q3 would require one memory access instead of two saving one memory

access for embedding reduction. Note that, our scheme originally chooses the

pair of clusters considering both benefit and cost ; however, in this example,

cost is the same for all pairs of clusters (a = 1, b = 1) and thus we only consider

the benefit.

benefit(ci, cj) = |{ qk | qk 2 Ii \ Ij }| (3.2)

4 After the algorithm merges ci and cj , it updates the state of the clusters

and the inverted index as shown below. For the next iteration, this merged

cluster is treated as a single one cluster (ci,j) for benefit-cost analysis. In
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Figure 3.4: Illustration of the Correlation-Aware Variable-Sized Clustering.

consequence, various sizes of clusters can be generated by the granularity of

one feature.

ci,j = { fk | fk 2 ci [ cj }, Ii,j = { qk | qk 2 Ii [ Ij } (3.3)

By computing benefit and cost, we evaluate benefit-cost ratio (i.e., benefit

cost
)

of all possible pairs of clusters. With the benefit-cost ratio, we can quantify

the effectiveness of every possible merge of two clusters. If the pair has a high

benefit-cost ratio, merging those clusters increases the benefit of memoization

with relatively low additional memory usage. To summarize, a unique feature

of our clustering scheme is that it selects clusters to merge by considering the

benefits of forming a larger cluster (decrease in memory accesses) and its cost

(increase in memory usage).

3.4.3 Algorithm Details

Figure 3.4 illustrates an example walk-through of our Correlation-Aware Variable-

Sized Clustering algorithm with a running example. First, 1 it inspects every

pair of the clusters, and 2 records the benefit-cost ratio of the merged clus-

ter (i.e., pair_ratio). Then, 3 it selects the cluster pair with the highest

benefit-cost ratio (i.e., clusters 2 and 3) and merges them into a single cluster.

In doing so, 4 it deletes the two original clusters (i.e., c2 and c3) and 5 adds

the new aggregated cluster c5 (= c2,3). Finally, 6 the cluster pairs and their
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ratios are updated along with the inverted index of the merged cluster. Note

that merging two clusters implies that queries with a feature in either of the

two clusters now access the merged cluster c5. Thus, we set an inverted index

of the merged cluster as a union of two existing inverted indexes (i.e., I5 =

I2 [ I3). The process of 3 - 6 is repeated with newly updated pair_ratio,

treating c5 as a single cluster like others. In Figure 3.4, cluster 4 and 5 are

selected to be merged to become c6. Although not shown in the figure, the

current memory usage is also updated after a merge. The algorithm exits if

the memory usage reaches the user-specified limit.

Figure 3.5 presents a pseudocode of the Correlation-Aware Variable-Sized

Clustering algorithm. Function correlation_aware_clustering is the top-

level function, which merges clusters until the current memory usage reaches

the user-defined memory limit (i.e., CAPACITY_LIMIT) (Line 36). It first calcu-

lates the benefit-cost ratios for all possible pairs of clusters of size one (Line

28-32) by calling getBCRatio (Line 9-14). It then finds the pair with the max-

imum benefit-cost ratio (Line 38) and merges the selected clusters (Line 40).

Function merge assigns a new ID to the merged cluster and updates its size,

features, and inverted index, as discussed before (Line 15-23). Finally, the orig-

inal cluster pair is erased from the cluster set (c) and the benefit-cost ratio

map (pair_ratio) (Line 41-44), and the newly merged cluster is inserted with

benefit-cost ratios calculated against all the other clusters (Line 45-50).

3.4.4 Parallelization of Correlation-Aware Variable-Sized Clus-
tering Algorithm

By exploiting the super-partition-level parallelism, our clustering algorithm

can be effectively parallelized. However, naïvely scheduling each thread to

execute on its own super-partition may end up violating the memory usage

constraint without coordination. Thus, we address this by employing a min-

imum benefit-cost ratio; each thread will stop merging once the benefit-cost

ratio of the next merge fails to exceed this minimum ratio, and once clus-

tering completes for all super-partitions, the total memory consumption is
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1 struct Cluster{
2 int cid; int size;
3 set<int> I; // Queries including any feature in this cluster
4 set<int> features; // Features in this cluster
5 };
6 float getBCRatio(Cluster a, Cluster b){
7 benefit = intersection(a.I, b.I);
8 cost = pow(2, a.size + b.size) � pow(2,a.size) � pow(2,b.size) + 1;
9 return benefit/cost;

10 }
11 Cluster merge(Cluster a, Cluster b, int &nextcid){
12 /* Merge cluster i and cluster j */
13 Cluster merged;
14 merged.cid = nextcid++;
15 merged.size = a.size + b.size;
16 merged.features = union(a.features, b.features);
17 merged.I = union(a.I, b.I);
18 return merged;
19 }
20 // S: The number of initial clusters(features)
21 void correlation_aware_clustering (set<Cluster> &c){
22 /* Pair of clusters and its benefit−to−cost ratio */
23 map<int, map<int,float>> pair_ratio;
24 /* Initial evaluation of benefit−cost ratio for cluster pairs */
25 for i=0 to S�1:
26 for j=i+1 to S�1:
27 pair_ratio[i][j] = getBCRatio(c[i], c[j]);
28 int nextcid = S;
29 /* Repeat merging until user−specified capacity limit */
30 capacity = S;
31 while (capacity < CAPACITY_LIMIT):
32 /* Returns cluster indices for the maximum ratio */
33 (i, j) = argmax(pair_ratio);
34 /* Merge two selected clusters */
35 Cluster merged = merge(c[i], c[j], nextcid);
36 /* Remove two clusters from c */
37 c.erase(c[i]), c.erase(c[j]);
38 /* Remove pairs containing c[i] or c[j] from pair_ratio*/
39 pair_ratio.erase(c[i].cid), pair_ratio.erase(c[j].cid);
40 /* Update ratios for cluster pairs including merged*/
41 for cl in c:
42 pair_ratio[cl.cid][merged.cid] = getBCRatio(cl, merged);
43 /* Add merged cluster info */
44 c.insert(merged);
45 /* Recompute memory usage here */
46 }

Figure 3.5: Pseudocode of the Correlation-Aware Variable-Sized Clustering

Algorithm.

computed. The minimum ratio is automatically adjusted according to the cal-

culated memory consumption, and the process continues until the expected
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memory consumption converges to the user-specified limit. This paralleliza-

tion technique enables our clustering algorithm to utilize multiple cores in

parallel, reducing its runtime by a significant factor (e.g., 9.7⇥ on a 16-core

machine with 32 hardware threads).

3.5 MERCI Online Query Processing

This section explains how MERCI utilizes the clusters identified by the offline

clustering scheme in Chapter 3.4 to create a table structure for memoization

(Chapter 3.5.1). Note that this is a one-time process performed when new

clusters are formed. Then we present how MERCI exploits this data structure

to serve incoming queries for embedding reduction (Chapter 3.5.2).

3.5.1 Preprocessing

Preprocessing for memoization consists of two steps. First, MERCI remaps

feature IDs to identify the cluster for each feature with only a few additional

memory access. Second, the memoization table that stores partial reduction for

various combinations of embedding vectors is constructed. Below, we explain

each step in detail.

Step 1: Remapping Feature IDs. At runtime, MERCI needs to identify

the cluster that a specific feature within a query belongs to. The naïve solution

would be to maintain a mapping table that maps each feature ID to a pointer

to its cluster information. However, such an approach will incur additional

memory access, since it is likely that not all mapping tables and data struc-

tures containing information on each cluster are cached. Instead, our approach

statically remaps feature IDs before deployment to minimize the information

needed to access at runtime.

Figure 3.6 ( 1 , 2 ) illustrates the feature ID remapping process. 1 First,

clusters with the same size are grouped into a cluster group, and all cluster

groups are sorted by descending order of cluster size. The order of the clusters

within a cluster group is irrelevant. 2 Then, starting from the first feature

34



{ 4 } → 001 → 0
{ 5 } → 010 → 1

{ 4, 5 } → 011 → 2
{ 6 } → 100 → 3

{ 4, 6 } → 101 → 4
{ 5, 6 } → 110 → 5

{ 4, 5, 6 } → 111 → 6
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Figure 3.6: Preprocessing Phase of Online Query Processing.

(ID 3 in the first cluster) to the last feature (ID 0 in the last cluster), we assign

new IDs 0 to N-1 in order, where N is the total number of features. With this

feature ID remapping, features in the same cluster or a cluster group have

contiguous feature IDs.

Step 2: Memoization Table Construction. Once the remapping com-

pletes, MERCI constructs the memoization table containing partial sums of

all 2cluster_size � 1 feature combinations in each cluster. The memoization

table is a 2D array (implemented as a 1D array) storing R vectors (R =
P

8clusters(2
cluster_size � 1)), each having D dimensions (i.e., identical to the

embedding vector dimension). This memoization table follows the order of

clusters determined during the feature ID remapping step.

Within a single cluster, we utilize the following mechanism to determine

the partial sum’s location for a specific combination. Figure 3.6 ( 3 - 5 ) shows

a simple example of filling out memoization table for cluster {4, 5, 6}. 3

First, we generate all possible combinations for every cluster. 4 Then we
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represent the combination as a one-hot bit vector whose kth least significant

bit is set when it contains the kth feature. For example, a combination of

2nd, 3rd feature (i.e., {5, 6}) is represented as 110(2). 5 Then, the integer

representation of this number minus one (except for the empty set) is utilized

as the relative offset of the partial sum within the cluster. This relative offset

is then added to the base offset of the cluster to find the absolute location

in the memoization table. For example, in the figure, seven partial sums are

stored in the memoization table consecutively starting from base offset 15.

To facilitate the retrieval of the partial reduction results during the run-

time, MERCI utilizes a tiny additional metadata array, as shown in Figure 3.6.

For each cluster group, the base offset within the memoization table for this

cluster group, as well as the first feature ID and cluster size (csize) of this

cluster group are stored.

3.5.2 Query Processing

When a batch of queries arrives, they are distributed to each thread, and

all threads run a subset of queries in parallel. For each query, MERCI iterates

through features and identifies the clusters they belong to using remapped fea-

ture IDs and the cluster group meta-data array. If multiple features in a query

fall into the same cluster, this implies an opportunity for partial reduction

as their partial sum is already memoized. Thus, MERCI retrieves sub-query

partial sums for all clusters and calculates final reduction results.

Figure 3.7 illustrates how MERCI processes a query in detail. Given a query

{0, 3, 4, 6, 7, 9, 12}, MERCI processes each feature sequentially starting from

the first feature in the query (i.e., feature 0). For each feature, MERCI finds

out each feature’s cluster group by comparing its ID with groups’ first IDs in

group meta-data array. Figure 3.7 assumes features 0, 3, 4 and 6 are already

processed, and feature 7 is about to be processed. Feature 7 is in Cluster

Group 1 because ID 7 is less than Group 2’s first ID 10 but greater than

Group 1’s first ID 4. Then, its cluster ID can be obtained by dividing offset

within a cluster group (feature ID - group first ID) by cluster size (csize) of
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Figure 3.7: Illustration of MERCI Query Processing.

that group. Hence, Feature 7 is in Cluster 1 (=
⌅
7�4
3

⇧
). Likewise, Feature 9 is

in Cluster Group 1, Cluster 1, and Feature 12 is in Cluster Group 2, Cluster

0. Then, MERCI detects a change in the cluster and collects previous features

in the same cluster ({7, 9}) to calculate the memoization table offset of their

reduction. The location of cluster’s reduction results (i.e., cluster offset) is

computed by {cluster group base offset} + cluster ID⇥(2cluster_size � 1). For

instance, Cluster Group 1, Cluster 1’s cluster offset is 22 (= 15 + 1⇥ (23�1)).

The exact offset is cluster offset+combination offset, which can be obtained

by representing the current feature set using a bit vector, as explained in

Chapter 3.5.1 and Figure 3.6.

Figure 3.8 again shows this process in a pseudocode. Function query_proce

ssing stores reduction results of B queries. For features in a query, it identifies

their cluster group IDs (g.gid) and the cluster IDs (cid) (Line 23, 36). Then it

compares g.gid and cid of the current feature (fid) with that of the previous

feature to collect features in the same cluster (Line 24-26). If the cluster has

changed, combination offset (Line 3-7) and the previous feature set’s cluster

offset (Line 9) is calculated in function getOffset, and the reduction result is

updated (Line 31-32). Note that the last feature set of the query needs to be

handled after the loop, but we omit that part for brevity.
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1 int getOffset (GroupInfo& g, int prev_cid, vector<int> features){
2 int combi_offset = 0;
3 int first_f = features[0];
4 /* Iterate features for bit vector representation */
5 for f in features:
6 combi_offset |= (1 << (f−first_f));
7 /* Compute cluster offset */
8 int cluster_offset = g.offset + prev_cid*(pow(2, g.csize)−1);
9 return combi_offset + cluster_offset;

10 }
11 void query_processing (vector<int> query[B], float &res[B][D]){
12 for qid = 0 to B−1:
13 /* Initialize cid & gid with first feature */
14 GroupInfo g = getGroup(query[qid][0]);
15 int prev_cid = (query[qid][0] − g.first_id)/g.csize;
16 int prev_gid = g.gid;
17
18 vector<int> features; // Features in the same cluster
19 for fid in query[qid]:
20 int cid = (fid − g.first_id)/g.csize;
21 /* cluster not changed */
22 if (prev_cid == cid && g.gid == prev_gid):
23 features.push_back(fid);
24 /* cluster changed */
25 else:
26 /* Get memoization table index for features */
27 int offset = getOffset(g, prev_cid, features);
28 for d=0 to D−1:
29 res[qid][d] += memoization_table[offset][d];
30 prev_cid = cid;
31 prev_gid = g.gid;
32 features = {fid};
33 GroupInfo new_g = getGroup(fid)
34 /* Group changed, update group info */
35 if(prev_gid != new_g.gid)
36 g = new_g
37 /* Omitted: Handle the last cluster here */
38 }

Figure 3.8: Query Processing Pseudocode (omitting the details for multi-

threading).

3.6 Discussion

3.6.1 Time Complexity of Correlation-Aware Variable-Sized
Clustering

Correlation-Aware Variable-Sized Clustering is performed on each super-partition,

and hence it only considers clusters within the same super-partition as po-

tential merge candidates. The time complexity of our clustering scheme is
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O(NS|Q|), where N is the number of embedding vectors (i.e., the number of

features), S the size of each super-partition, and |Q| the number of queries

in the training set. For each merge, the scheme needs to evaluate the benefit

and the cost of merging the different pairs of clusters. Here, there exist at

most S remaining clusters, and evaluating the benefit of merging two clusters

requires at most |Q| operations as it is simply an intersection of two inverted

indices whose size is bounded to |Q|. As a result, each merge requires at most

O(S|Q|) operations. In the worst case, the merge needs to be performed N

times (i.e., S merges for N/S super-partitions), making the total time com-

plexity O(NS|Q|). We have empirically confirmed that a choice of small S

(e.g., 128) is nearly as effective as a larger S such as 1024, and expect that

even larger S does not substantially boost the performance. This implies that

the number of co-appearing features for a single feature does not exceed 128

on average in the datasets used for evaluation.

If we assume that there was only one super-partition (e.g., N = S), the

time complexity of a single merge becomes O(N |Q|). In the worst case, the

merge needs to be performed for N times, meaning that the time complexity

without the hypergraph partitioning step (Chapter 3.4.1) is O(N2|Q|). This

is impractical, especially given that N is often an order of millions. Therefore,

the step of hypergraph partitioning is justified to keep the time complexity

manageable.

3.6.2 Capacity Cost

Some large-scale recommendation systems [212, 213] already require an enor-

mous capacity to store embeddings, and at a glance, it may seem applying

MERCI on such systems is impractical due to the additional capacity cost of

memoization. For such models, naively using MERCI for all embedding tables

may incur an excessive capacity cost. To avoid such a huge capacity cost, we

envision that it is possible to selectively apply MERCI for some embedding

tables (or a subset of a single embedding table) that are i) frequently ac-

cessed, ii) reasonably sized, and iii) have high locality. In fact, several existing
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literature state that the large-scale recommendation model utilizes multiple

separate embedding tables [127], and some embedding tables exhibit higher

locality than others [60]. Furthermore, MERCI allows users to specify the limit

of capacity overhead from the memoization table.

3.6.3 Handling Embedding Table Updates and Query Access
Pattern Changes

Embedding vectors are known to be frequently retrained every few hours [60].

In that case, the memoization table needs to be updated as well. However,

the time to update the memoization table is relatively smaller than the time

to retrain the embedding vectors. And simply updating the embedding vec-

tors does not require MERCI to perform offline clustering (i.e., Hypergraph

partitioning and Correlation-Aware Variable-Sized Clustering) again. In con-

trast, when the query access pattern changes, hypergraph partitioning (Chap-

ter 3.4.1) and clustering (Chapter 3.4.2) need to be performed again. In prac-

tice, this happens much less frequently than the embedding vector change in

many recommender systems. For all our workloads, clustering and partition-

ing are completed within 10 minutes with a 16-core machine (the same as in

Chapter 3.7). Naturally, this time can be further reduced with the use of a

better machine or the use of multiple machines.

3.7 Evaluation

3.7.1 Datasets

Real-world Datasets. For the assessment of our algorithm, we utilize popu-

lar public datasets for the recommender systems: the Amazon Review dataset

(books, electronics, clothing, shoes, and jewelry, sports and outdoors, office

products, and home and kitchen) [89], Last.fm Million Songs dataset [25], and

DBLP Co-Authors Network dataset [164]. Although it would be ideal to use

the feature traces from actual recommender models such as Meta DLRM [139],

such production traces are not publicly released.
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Table 3.1: Dataset Analysis.

Name
# of

Features
# of

Queries
Avg.

Query Len.
Embedding
Tbl. Size

MemTable
Size (+8⇥)

Synthetic datasets

Synthetic 1 1,000K 1,000K 60.0 244MB 2.08GB

Synthetic 2 1,000K 1,000K 54.0 244MB 2.06GB

Synthetic 3 1,000K 1,000K 51.0 244MB 2.19GB

Synthetic 4 2,000K 2,000K 60.0 488MB 4.18GB

Synthetic 5 2,000K 2,000K 54.0 488MB 4.09GB

Synthetic 6 2,000K 2,000K 51.0 488MB 4.36GB

Real-world datasets

Books 3,187K 32,305K 72.796 568MB 5.20GB

Electronics 759K 10,711K 55.746 115MB 1.06GB

Clothing 2,345K 4,137K 81.953 224MB 2.06GB

Sports 1,506K 5,998K 96.019 196MB 1.75GB

Office Products 599K 3,736K 64.088 85MB 0.73GB

Home & Kitchen 1,806K 11,270K 51.476 248MB 2.23GB

Last.fm 636K 534K 95.611 104MB 0.88GB

DBLP 540K 479K 61.780 102MB 0.87GB

Each dataset was parsed into a format suitable for our use. Queries and

features were defined in a way they would be in a recommender system. For

instance, in the Amazon Review dataset, we defined a feature as a product for

sale on Amazon, and query as a group of products (features) a reviewer bought

or viewed together. Then, queries were randomly partitioned into train and

test sets at the ratio of 8:2. Queries in the train set are used by Correlation-

Aware Variable-Sized Clustering to calculate the benefit and cost during offline

clustering, and queries in the test set were utilized to simulate query process-

ing with the memoization table. Specific statistics regarding each dataset are

delineated in Table 3.1.
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Synthetic Datasets. We also evaluate MERCI on synthetic datasets. For

synthetic dataset generation, we employ a technique named Stochastic Block

Model (SBM) [195], which is a well-known approach for creating a random

graph with community structures. We configured the parameters such that

128 features form a single correlative group, and the total number of features

be N . Furthermore, each query comes with an average of p features from the

same group and an average of q features from different groups. We evaluated

datasets with (p, q) pairs of (48, 3), (48, 6), (48, 12) for N = 1M and N = 2M .

Queries are randomly partitioned into train and test sets at the ratio of 8:2.

3.7.2 Methodology

We implemented baseline and MERCI’s embedding reduction operation in

C++. In both cases, queries are distributed to multiple threads. We func-

tionally verified the correctness of the implementation and checked that the

baseline implementation achieves high performance by confirming that it fully

utilizes the system’s memory bandwidth. MERCI implementation is available

at https://github.com/SNU-ARC/MERCI. We measured the runtime mostly

on Amazon Web Services (AWS) EC2 m5.8xlarge instance [16], which pro-

vides 16 Intel Xeon Platinum 8259CL CPU cores with 128GiB of DRAM. We

also checked the performance sensitivity to machines by evaluating MERCI

on desktop-class Intel Core i7-10700K CPU with 64GiB of DRAM. Note that

accessing hardware counters is possible only on the local desktop, but not on

the Amazon server. Thus, we perform energy and LLC miss analysis on the

desktop machine. All evaluations were performed on Ubuntu 18.04 LTS.

3.7.3 Performance Evaluation

Throughput. Figure 3.9 delineates the throughput improvement of MERCI.

The x-axis denotes the size of the memoization table over the original em-

bedding table. We limited the additional memory usage incurred by MERCI’s

memoization table to 0.25, 0.5, 1 and 8 times the size of the original embed-

ding table. Note that MERCI uses both the original embedding table and the
42
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Figure 3.9: Throughput Improvement.

memoization table, so this implies pure memory consumption from memoiza-

tion. All configurations in the figure (Remapped, +0.25x, +0.5x, +1x, +8x)

hypergraph-partitioned N features into super-partitions of size 128. The em-

bedding dimension is set to a constant value of 64 (i.e., 64 elements per em-

bedding vector), and all measurements were repeated five times and averaged.

Error bars are expressed in red lines but too minuscule to notice.

The bars labeled Remapped refer to remapped-baseline whose height de-

note runtime speedup without memoization. In Remapped, the N features

are hypergraph-partitioned into superpartitions of size 128 and remapped so

that those in the same super-partition are assigned consecutive IDs. Hence,

Remapped shows the pure effect of locality-aware ID remapping without our

clustering algorithm and memoization. As shown in Figure3.9, considering lo-

cality at coarse-grained granularity improves by 29%. Clearly, clustering and

memoization give substantial extra speedup on top of ID remapping.

Across all datasets, MERCI manifests significant throughput improvement

of 62%–262%, and achieves a geomean speedup of 102% when the memoiza-

tion table size is at +8⇥. As shown in the figure, it is possible to obtain a

decent speed up of 52%–160%, and 74% on average when the table size is

limited at +1⇥. Even for smaller table size which is limited at +0.25⇥ and

+0.5⇥, MERCI achieves 60% and 66% on average, respectively. In general,

increasing the memoization table size leads to further speedup, but with di-

minishing returns. This is because MERCI first utilizes the capacity for the

most popular co-appearing combinations and then utilizes extra capacity for

the less frequently co-appearing ones.

43



Syn.1
(1.63)

Syn.2
(1.75)

Syn.3
(1.84)

Syn.4
(1.63)

Syn.5
(1.75)

Syn.6
(1.84)

Elec.
(2.40)

Cloth.
(2.58)

Home.
(2.29)

Last.
(1.83)

Books
(2.07)

Sports.
(2.22)

Office.
(2.32)

DBLP
(3.75)

0

20

40

60

80

100

Fe
at

ur
es

 C
ov

er
ag

e 
(%

)

1 2 3 4 5 6+

Figure 3.10: Feature Coverage Per Memoization Size.

Memoization Size Analysis. Figure 3.10 analyzes feature coverage of mem-

oization table access by memoization size (i.e., the number of features aggre-

gated together). This is an actual clustering result that derived the speedup in

Figure 3.9. Each section in a stacked bar represents the percentage of features

covered by a given memoization size, summing up to the total number of de-

manded features in the test set (i.e.,
P|Q|

qid=1 query[qid].size()). For instance, in

the Amazon Office Products dataset, 18.6% of all features were retrieved as a

reduction of four features, thus quartered table access count for that portion.

On average, 75.4% of features were accessed by a memoization size greater

than one. In the x-axis, the number in parenthesis indicates the average num-

ber of features retrieved per memoization table access. The result shows that,

and single table access covers from 1.63 to 3.75 features on average.

The figure illustrates that MERCI effectively memoized the embedding

table as a large portion of memory accesses reads amassed features. Even

when MERCI retrieves the memoization value of size 1, it is still superior to

the baseline because it benefits from locality-aware feature ID remapping, as

discussed in Figure 3.9.

3.7.4 Evaluation on Desktop Platform

Machine Sensitivity. Figure 3.11a explores the MERCI performance sen-

sitivity on different machine configurations with +8⇥ memoization table. As

shown in Figure 3.9, MERCI demonstrates largely similar performance im-

provements by 102% on the server system (AWS EC2 m5.8xlarge instance)
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Figure 3.11: Machine Sensitivity and Energy Efficiency.

and 78% on the desktop system (Intel Core i7-10700K CPU with two memory

channels). The result indicates that MERCI can achieve speedup on any sys-

tem whose embedding reduction performance is bound by memory bandwidth.

Technically, MERCI may not show a performance improvement on some sys-

tems with very abundant memory bandwidth and a small number of cores.

In practice, however, such systems are rare as they would heavily underutilize

the memory bandwidth in many conventional operations.

Energy Savings. Figure 3.11b shows total energy consumption normalized

to baseline energy consumption. We measured energy consumption with In-

tel Running Average Power Limit (RAPL) interface [53]. MERCI significantly

saves energy consumption by 40.2% on average (up to 63.5%) at +8⇥ config-

uration.
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Figure 3.12: Memory Access Count Reduction.

Memory Access Count. Figure 3.12 shows memory access count (i.e., reads

+writes) during MERCI’s query processing normalized to baseline memory

access count. For memory access count measurement, we utilized Intel VTune
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Profiler [46]. As in previous sections, memoization table sizes were set at +0.25,

+0.5, +1 and +8 times the original embedding table, and the embedding di-

mension was set to a constant value of 64. The graph shows that MERCI’s total

memory access count decreases by 48%, 40% for real and synthetic datasets at

+8⇥ memoization table. MERCI successfully accelerated memory-bound em-

bedding reduction operation by reducing the actual count of memory accesses,

which decreases as we use more memory for storing memoization results. We

also measured the memory bandwidth utilization of both the baseline and

MERCI using Intel VTune Profiler. Both systems almost fully utilize the avail-

able memory bandwidth (e.g., 90+% of the theoretical peak bandwidth), and

this indicates that the memory access reduction shown in Figure 3.12 directly

translates to the throughput improvement.

3.8 Related Works

3.8.1 Frequent Pattern Mining

Frequent pattern mining algorithms such as apriori [13], FP-growth [83], and

DHP [146] algorithm can be utilized to identify sets of frequently co-appearing

features. However, the main drawback of these algorithms is that they simply

find multiple sets of co-appearing features, allowing a single feature to belong

in multiple sets. In such a case, unlike our clustering approach, retrieving

the reduction results becomes much more difficult. Specifically, i) identifying

the relevant partial sums for a given query and ii) finding where they are

located become serious challenges. It is our design choice to give up some

extra reduction opportunities for the efficient retrieval of partial sums.

3.8.2 Hardware Solutions for the Embedding Reduction

Recently, Meta [60, 79, 139, 147], Google [54], and Alibaba [190] emphasize

that embedding reduction is memory-bound and takes a significant portion

of runtime. Several works addressed this problem with hardware support. For

example, the work [110, 115] adopted near-memory processing (NMP) archi-
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tecture to exploit the abundant internal bandwidth to perform reduction, and

only passes the reduction outcome to the external device through links with

lower bandwidth. Centaur [92] is a chiplet-based hybrid accelerator that also

includes embedding reduction as its target. These solutions report that they

achieve up to an order of magnitude performance improvements or traffic re-

ductions based on their simulation results. However, solutions that require

hardware support are often expensive. On the other hand, our proposal is an

immediately deployable solution that provides a substantial speedup at the

cost of extra memory capacity.

3.8.3 Feature-aware Optimizations

Bandana [60] utilizes hypergraph partitioning to place embedding vectors that

are likely to be accessed together in the same 4KB NVM block. Bandana aims

to reduce DRAM capacity consumption under the same number of memory

access counts while our work aims to reduce the number of memory access

count itself.

3.8.4 Memoization

Since the first introduction of memoization [133], memoization is widely adopted

as a key technique to accelerate specific target. COREx [66] scales datacenter

accelerators via memoization. Specifically, it proposes an accelerator and a

storage layer that memoize and reuse the outcome of previously accelerated

computations when the accelerator needs to compute the same thing. Other

proposals [28, 44, 124, 162, 187] identify computation redundancy caused by

similarities in the input within the various granularity (e.g., instruction, func-

tion, task level) and memoize them. Thus these works avoid processing the

same set of instructions and rather replace such memoized regions with much

simpler operations. In the work [205], they propose a technique that can be

used to accelerate memoization.
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Chapter 4

Hardware-Software Co-design for
Efficient, Lightweight Self-Attention
Mechanism in Neural Networks

4.1 Overview

The self-attention mechanism has a strong ability to capture relations within

input entities at the cost of high computational cost. Based on the intuition

that irrelevant relations in self-attention operation, which barely impact the

final outcome, can be effectively filtered out by computing approximate simi-

larity, we present ELSA, a hardware-software co-designed solution for efficient,

lightweight self-attention. With a novel approximation algorithm, ELSA sub-

stantially reduces computational waste in a self-attention operation. Unlike

conventional hardware such as GPUs, which fails to benefit from the proposed

approximation, our specialized hardware directly translates this reduction to

further improve performance and energy efficiency. This reduced cost of self-

attention enables us to apply self-attention to larger data, which can uncover

distant relations within the data that today’s models cannot handle effectively.

Despite several other methods [40, 42, 51] attempting to reduce the com-

putational cost of self-attention operations, their approach is often limited to

manipulating operations such as changing the order of operations or factoriz-

ing/tiling the operation. As a result, the computation reduction ratio remains

static, as these methods do not account for the unique properties of datasets.

In contrast, ELSA considers the relationships among input entities to filter

out unnecessary relationships, rather than treating self-attention as a simple
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computation of numbers. This approach effectively reduces computational re-

quirements by taking into account the properties of datasets, which can lead

to greater reductions in datasets with strong local relationships among input

entities. In addition, ELSA presents new potentials for research focused on

decreasing the computational cost of self-attention operations. It does so by

illustrating how customized hardware accelerators can convert the reduction

in computation into an acceleration in speed and an improvement in energy

consumption beyond what GPUs are capable of achieving.

4.2 Opportunities for Approximation

All three input matrices (Q, K, V) of the self-attention are dense. In other

words, they mostly consist of nonzero elements. However, not all elements of

these matrices contribute equally to the output. This is because the softmax

operation maps most of the values in the attention score matrix (S) to zeros

or near-zero values except for the few largest values of the row. It effectively

makes S
0 a sparse matrix with many near-zero values, and hence the final

matrix S
0
V as well. Simply performing the sparse matrix multiplication for the

second matrix multiplication (S0
V) does not completely mitigate the high cost

of the self-attention, since the first matrix multiplication QK
T still requires

n
2
d multiplications. To fully exploit the approximation potential in the self-

attention, there should be a way to identify the set of keys (for each query)

that will result in large attention scores, without performing expensive n
2
d

multiplications.

Our intuition is that it is possible to achieve this by performing an ap-

proximate and lightweight similarity computation. Instead of performing d

multiplications and the softmax operation to identify whether the ith query

and the jth key will be relevant or not (i.e., if s0
ij

will be near-zero or not),

an approximate similarity can be computed to quickly filter out a key that is

expected to be not very relevant to the query. If this approximate similarity

computation indicates that they are potentially relevant, the exact dot product
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similarity is computed. If not, this similarity computation and all subsequent

computations can be skipped. With this scheme, it is possible to eliminate a

large amount of computational waste, and our specialized hardware can trans-

late this reduction into performance improvement as well as energy savings.

4.3 Approximate Self-Attention

4.3.1 Overview

Our approximate self-attention scheme consists of three sub-operations. First,

we estimate the angle between two vectors (e.g., a key and a query) with min-

imal computation by utilizing the concise representations (e.g., k-bits hash,

also called binary embedding) of the key and the query (Chapter 4.3.2, Chap-

ter 4.3.3). Second, an estimated angle is utilized to compute the approximate

similarity between a query and a key (Chapter 4.3.4), based on the intuition

that the dot product is directly proportional to the cosine of the angle be-

tween two vectors. Finally, the approximate similarity is compared with a

certain threshold (Chapter 4.3.5) to identify whether a specific key is relevant

to the query or not.

4.3.2 Binary Hashing for Angular Distance

Sign Random Projection. Sign random projection (SRP) [32] is a well-

known technique that effectively maps each input vector to a binary hash

vector in a way that allows the original angular distance between two vectors

to be efficiently estimated with the two corresponding binary hash vectors.

This mapping is often utilized for locality-sensitive hashing schemes, which is

an approximate nearest neighbor search algorithm that utilizes SRP, but our

work focuses on its use as an efficient estimator for the angular distance.

For this process, a random d-dimensional vector v is initialized by set-

ting each of its components to a value sampled from the normal distribution

N(0, 1). Then, for an input vector x, the hash bit value of 1 is assigned if

v ·x � 0 and assigned 0 otherwise. This is repeated for k times with k random
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Figure 4.1: Visualization of Sign Random Projection (SRP).

vectors v1, ...vk to construct k-bits binary hash h(x) for the input vector x.

Formally, the hash function is defined as follows.

h(x) = (hv1(x), hv2(x), ...hvk(x)) where hv(x) = sign(v · x)

Here, sign(x) is a function whose value is 1 if x � 0 and 0 otherwise. It is

proven that the Hamming distance between hashes of the vector x and y (i.e.,

hamming(h(x), h(y))) is an unbiased estimator of their angular distance [32].

Intuitively, if two vectors are on the same side for many of the random hyper-

planes each defined by one of k random vectors v1, ...vk, they are more likely

to have a smaller angle. For example, Fig. 4.1 shows that x1 and x2 are on

the same side of three random hyperplanes out of four, and thus have a small

hamming distance as well as angular distance. The following equation is used

to estimate the angle between vector x and y [32].

✓x,y ⇡ ⇡

k
· hamming(h(x), h(y))

Our work, in fact, employs the slight variant of SRP that utilizes the k orthog-

onal vectors generated with the modified Gram-Schmidt Process [71]. Utilizing

the orthogonal vectors prevents two or more random vectors from pointing to

a similar direction, which leads to an unnecessary emphasis on that specific

direction. This method is proven to reduce the error of the angular distance

approximation [102].

Angle Correction. The estimated angle computed from the hamming dis-

tance is not biased but still has errors. For this reason, if we simply utilize

this estimator without any correction, the estimated angles will be larger than

the true angle in about half of the cases. Since overestimating the angle (i.e.,
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underestimating the similarity between two vectors) can result in our scheme

missing the keys that have relations with the query, we subtract the bias ✓bias

from this estimator. Specifically, we set ✓bias to be the 80th percentile error

of this estimator so that subtracting this bias from the angle makes this esti-

mator underestimate angles in 80% of the cases. The 80th percentile error is

obtained by experiments on a synthetic dataset with standard random normal

vectors. For a specific case d = 64 and k = 64, ✓bias is 0.127.

4.3.3 Efficient Hash Computation

Cost of Hash Computation. To obtain the k-bits hash value for a d-

dimensional vector x, a k ⇥ d orthogonal matrix (i.e., a matrix whose row

vectors are unit vectors orthogonal to each other) is multiplied to x, and then

each element is assigned a hash bit (i.e., 1 if it is positive; 0 if not). With this

scheme, computing the hash values for n vectors requires ndk multiplications

(as well as n(d � 1)k additions), and since our scheme requires computing

hashes for all queries and keys, the total number of multiplications required

for hash computation is 2ndk. This cost is negligible compared to 2n2
d (cost

of dot product similarity computation and value matrix computation) when

n � k. However, at least for current neural networks with the limited n (e.g.,

128 for small models), this is not always the case. To minimize the amount

of computation for hash computation, our work exploits Kronecker product,

a technique to efficiently compute the matrix multiplication using orthogonal

matrices [68, 210].

Kronecker Product. The key intuition of our approach is that we can utilize

a structured orthogonal matrix for hash computation. Specifically, we utilize

an orthogonal matrix which can be computed by the Kronecker product of

smaller matrices. A Kronecker product of a m⇥ n matrix A and p⇥ q matrix

B produces the pm⇥ qn matrix as shown below.

Kronecker Product: A⌦B =

2

66664

a11B . . . a1nB

...
. . .

...

am1B . . . amnB

3

77775
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It is well known that Kronecker product of orthogonal matrices results in

an orthogonal matrix. Thus, it is possible to obtain the k⇥d orthogonal matrix

through Kronecker products of smaller orthogonal matrices. This characteristic

allows us to utilize the technique [68, 210] to efficiently compute the hash value

of the vector x, which is obtained by computing Ax.

1.2 -0.8
0.8 1.2

1.2 -0.8

0.8 1.2
⊗

0.1
0.4
0.3
0.2

X

-0.25
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!.reshape(2,2)

--⊗-.
/-- -.
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--

0.2 0.7
-0.7 0.2

-./
0.1 0.4
0.3 0.2

0.1

0.4

0.3

0.2

reshape(4)

/

X
-/

Figure 4.2: An Example of Efficient Computation with Kronecker Product.

Ax = (A1 ⌦A2)x = (A1x.reshape(8,8)AT

2 ).reshape(64)

Efficient Computation with Kronecker Product. Fig. 4.2 visualizes an

example case of computing matrix Ax with much fewer computations for a

4⇥4 matrix A, which is represented as Kronecker product of two 2⇥2 matrices

A1 and A2. Similarly, the above equation shows the case for k = d = 64 where

the 64 ⇥ 64 matrix A is represented as Kronecker product of two matrices.

Here, x.reshape(8,8) represents the operation of reshaping 64-dimensional

vector x to a 8⇥8 matrix by dividing the vector by 8 slices and stacking them.

With this technique, the amount of multiplications involved in this operation

is now reduced to 1024 (i.e., 2d3/2) from 4096 (i.e., d2).

Ax = (A1 ⌦A2 ⌦A3)x

= (A2(x.reshape(4,4,4)AT

3 )
T (0,2)

A
T

1 )
T (0,2).reshape(64)

Similarly, the technique can be applied to obtain orthogonal matrix A

by computing Kronecker product of three smaller 4 ⇥ 4 matrices A1,A2,A3

using the above equation. Here, T (0, 2) means the tensor transpose which maps

element with index (i, j, k) to (k, j, i). With this scheme, three batched (with
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batch size = 4) 4 ⇥ 4 multiplications are required to compute Ax. In other

words, this requires a total of twelve 4⇥4 matrix multiplications which involve

768 (i.e., 3d4/3) multiplications. Note that the explained efficient computation

mechanism also works for cases where k 6= d or A is not a square matrix [210].

4.3.4 Approximate Self-attention Algorithm

Fig. 4.3 illustrates our approximate self-attention algorithm. Below, we explain

each sub-operation of the approximate self-attention algorithm in detail.

Preprocessing. 0 At the beginning, k-bits hash values for keys (Chap-

ter 4.3.2) are computed with the efficient hash computation scheme (Chap-

ter 4.3.3). At the same time, the norm of each key is computed and stored as

well. This preprocessing requires 3nd4/3 multiplications for the hash compu-

tation and nd multiplications as well as n square root computations for the

norm computation. Note that it is possible to compute query hashes during

this phase. However, for now, we assume that the query hash is computed

when that query is processed so that it matches well with the hardware ar-

chitecture explained in the next section. Also, note that preprocessing phase

is done only once for n queries since n queries share the same set of n keys.

Thus, even though preprocessing incurs an extra computational cost, it is triv-

ial compared to the cost of original self-attention (i.e., O(n2
d)) and also note

that a significant amount of computational cost will be saved later by skipping

operations related to the keys that are not relevant to the query.

Approximate Similarity Computation. Once the preprocessing ends, the

approximate dot product similarity between a query and each key needs to

be computed to determine whether they are relevant or not. For a query (Qx)

and each key (Ky 2 {K1, ...Kn}), the following computations are performed.

1 First, the query hash value h(Qx) is obtained using the efficient compu-

tation scheme in Chapter 4.3.3. 2 Second, the Hamming distances between

a query hash and all keys are computed. 3 Third, these Hamming distances

are translated to angles ✓Qx,Ky for all 1  y  n using the equation in Chap-

ter 4.3.2, and the ✓bias is applied. 4 Fourth, the cosine function is applied to
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each of these approximate angles, and then 5 the corresponding key norm is

multiplied to each of them. Note that the resulting value is the estimate of the

dot product between the normalized query and the key, which represents the

(query-normalized) similarity of those two vectors. The following equations

illustrate this relation.

Sim(Qx/kQxk,Ky) = (Qx/kQxk) ·Ky = kKyk cos(✓Qx,Ky)

⇡ kKyk cos
⇣
max(0,

⇡

k
· hamming(h(Qx), h(Ky))� ✓bias)

⌘

6 Finally, once the above values are computed, we inspect these values and

compare them with a constant threshold to determine whether these values

are relevant to the query or not. The method to determine this threshold

is explained in the next subsection. 7 At this point, the candidates for the

current query have been selected, and the next query is processed (starting

from step 1 ). Each approximate similarity computation between a key and

a query involves i) single Hamming distance computation, ii) a multiplication

(⇡
k
) and a subtraction (✓bias), iii) a cosine function, iv) and another multiplica-

tion (kKyk). This cost is substantially lower than d multiplications required to

compute the exact dot-product similarity. Furthermore, Chapter 4.4.3 shows

we can avoid some of these computations in hardware using a lookup table.

4.3.5 Candidate Selection Threshold

Motivation. There can be several different ways to filter out irrelevant keys

for a particular query based on the approximate similarity. One possible way

is to sort the score and select a certain number of top-scoring elements. How-

ever, sorting has nlogn time complexity and is difficult to efficiently implement

in hardware, especially when n is large. For these reasons, our work focuses

on filtering out potentially irrelevant keys by comparing those keys’ approxi-

mate (query-normalized) similarities with a pre-defined threshold. One major

issue is that different layers and sub-layers utilizing self-attention often require

different thresholds since each (sub-)layer often exhibits a different distribu-

tion of attention scores. However, it is impractical to leave these layer-specific
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Figure 4.4: Process of Identifying Layer-specific Thresholds.

threshold values as user-defined hyperparameters, especially for models like

BERT-large which has 384 sub-layers utilizing the self-attention mechanism.

To avoid such an impracticality, we let a user specify a single hyperparame-

ter that represents the degree of approximation, and present a scheme that

automatically finds the (sub-)layer-specific thresholds that correspond to the

user-specified degree of approximation.

Learning Layer-Specific Thresholds. To find the layer-specific threshold,

our scheme runs target neural network model inference on the training set and

inspects the characteristics of each layer utilizing self-attention. Fig. 4.4 illus-

trates this process. First, for each invocation of the self-attention operation for

a particular (sub-)layer, our scheme inspects the softmax-normalized attention

scores for each query. Then, 1 we identify the set of keys whose softmax-

normalized attention score exceeds p · 1
n

where p is a user-specified hyperpa-

rameter, and n is the number of input entities. Here, the hyperparameter p rep-

resents the degree of approximation. For example, if p = 2 when n = 200, this

means that the user considers entities whose softmax-normalized score exceeds

0.01 to be relevant. The selection of a larger p implies aggressive approxima-

tion and a smaller p means conservative approximation. 2 Among those keys,

we focus on the key with the minimum softmax-normalized attention score1.

3 Then, we normalize its original attention score by dividing it with the query

norm kqk and the maximum key norm kKmaxk = max(kK1k, ..., kKnk). We

denote the resulting value as the threshold t. This process is repeated for mul-

tiple input data in the training set to find the average of this value for each
1Note that there exists a case where all softmax-normalized attention scores are below

p · 1/n (this can happen when p > 1). In such a case, we simply take the maximum score
among all keys.
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(sub-)layer. During an actual inference run, the threshold t multiplied by the

maximum key norm (t · kKmaxk) is compared with the approximate similarity

(Chapter 4.3.4) to determine whether a key (in the key matrix K) is relevant

to the current query. Specifically, the following equation specifies the condition

to determine if the computation for the key Ky can be skipped for query Qx.

t · kKmaxk � kKyk · cos
⇣
max(0,

⇡
k
· hamming(h(Qx), h(Ky))� ✓bias)

⌘

4.4 ELSA Hardware Architecture

4.4.1 Motivation

Hardware specialization is a well-known approach to improving performance

and energy efficiency of a specific type of computation. Naturally, this idea can

be applied to the self-attention operation, which accounts for a substantial por-

tion of total execution time in many emerging NN models of today. However,

we also emphasize more important, often overlooked, benefits of building spe-

cialized hardware–exposing unique optimization opportunities for the specific

operation that cannot be exploited profitably by the conventional hardware.

We make this point with the proposed approximation algorithm as an

example. As explained in Chapter 4.3.4, the key idea of ELSA approximate

attention is to avoid d-dimensional dot product through a hamming distance

computation between binary embeddings, multiplication, and a cosine func-

tion. Unfortunately, the conventional GPU is not suited for many of these

operations, and our internal experiments have found that the approximation

scheme results in a 3.14⇥ slowdown because simply performing d-dimensional

dot product is faster than performing the approximate similarity computation,

even with various manual/automated optimizations for CUDA implementa-

tion (e.g., TorchScript Tracing [153]). We find that the true benefits of the

proposed approximation scheme can be harnessed only by a specialized hard-

ware that is co-designed with this approximation algorithm. This is where a

software-hardware co-optimization uncovers the unique opportunity that pure

hardware or software-only optimizations fail to exploit.
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4.4.2 Hardware Overview

For the efficient processing of the self-attention operation, we design a spe-

cialized hardware accelerator that exploits the novel approximation scheme

introduced in Chapter 4.3.4. One can view the ELSA accelerator as a special-

ized functional unit for the self-attention mechanism, which can be integrated

with various computing devices such as CPUs, GPUs, and other NN accel-

erators. The host device can issue a simple command to initiate the ELSA

accelerator and pass the inputs (i.e., key/query/value matrix and n). When

a device with scratchpad memories such as GPUs or NN accelerators is used,

matrix inputs (and output buffer) can be passed by reference so that the ac-

celerator can directly read those inputs without making another copy. Once

inputs are ready, the accelerator goes through the preprocessing/execution

phase and then writes the output matrix to the output memory and notifies

the host.

Operation Overview. Figure 4.5 shows the block diagram of the ELSA

accelerator pipeline, which also presents its high-level dataflow. The ELSA

accelerator takes a key matrix, a query matrix, and a value matrix as inputs

for self-attention to generate the output matrix. As soon as inputs are ready,

the preprocessing phase begins. This phase computes k-bits hash values of each

row in the key matrix using a hash computation module, and stores them in

the key hash memory. Similarly, the norm of each key vector is computed using

a norm computation module and stored in the key norm memory. Once this

phase ends, the execution phase begins where each row of the query matrix is

processed in sequence to output a single row of the output matrix at a time.

Specifically, for each query, Pc candidate selection modules retrieve Pc keys’

hashes and norms (along with the query hash) every cycle and outputs up to Pc

selected candidate key IDs (i.e., row IDs) to each module’s output queue. Then,

these selected key IDs are arbitrated and passed to the attention computation

module, which computes and accumulates the selected key’s contribution to

the output (for the current query) every cycle. Once all selected keys for this
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particular query are computed, output division module performs the division

on this output. This process is repeated for each row of the query matrix (i.e.,

each query), and the operation ends when the last query is processed.

4.4.3 Design of Hardware Modules

(1) Modules for Approximate Self-attention Computation

Candidate Selection Module. The candidate selection module performs

the approximate self-attention mechanism (Chapter 4.3.4) to identify the set

of potentially relevant rows in the key matrix (i.e., candidates), and then

outputs the indices of such elements to the attention computation module.

Every cycle, this module takes three inputs: i) k-bits hash value of a key from

the key hash memory and ii) the norm of this key from the key norm memory,

and iii) k-bits hash value of the current query from the query hash buffer.

Then, this module utilizes k-bits XOR unit followed by an adder to compute

the Hamming distance between the key hash value and the query hash value.

The resulting Hamming distance value is then used as an index to access the

pre-populated lookup table, which stores cos(⇡/k ·dHamming�✓bias). Since the

Hamming distance takes an integer value between zero and k, this lookup table

has k + 1 entries. Once this value is retrieved, it is multiplied with the norm

of the current key to compute the approximate similarity (Chapter 4.3.4).

This value is compared with the product of threshold t (Chapter 4.3.5) and

the largest vector norm of the key matrix (i.e., t · max(kK1k, ..., kKnk)). If

the approximate similarity is greater than this value, the key in question is

selected as a potentially relevant key, and the index of this key is then passed

to this module’s output queue. Multiple (i.e., Pc) candidate selection modules

process different keys in parallel, and then their outputs are arbitrated and

passed to the attention computation module. The candidate selection module

is fully-pipelined and processes one key per cycle.

Attention Computation Module. A single attention computation module

is in charge of computing a single row of the final output matrix, along with

the output division module. Figure 4.6 represents this module’s operation in
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1 def attention_computation (float q[], float key[][], float val[][],
2 vector<int> candidates):
3 for keyid in candidates:
4 /* Dot−Product*/
5 parallel for i = 0 to d−1:
6 temp[i] = key[keyid][i] * q[i]
7 score = ParallelSum(temp)
8 /* Exponent Computation */
9 score = exp(score)

10 sumexp += score
11 /* Weighted Sum */
12 parallel for i = 0 to d−1:
13 output[i] += score * val[keyid][i]
14 def output_division (float output[], float sumexp):
15 reciprocal = 1/sumexp
16 /* Division */
17 for i = 0 to d/mo−1:
18 parallel for j = 0 to mo−1:
19 output[i * mo + j] *= reciprocal

Figure 4.6: Pseudocode of Attention Computation and Output Division Mod-
ules.

pseudocode. Each cycle, this module takes a key as input from the arbiter

with the longest-queue-first scheduling policy. Then, it first computes the dot

product between a key (Ky) and a query (Qx) using its d multipliers and an

adder tree (Line 5-7 in Figure 4.6). After that, for the softmax normalization

of the resulting attention score, the exponent of this value is computed using a

lookup table (explained in Chapter 4.4.5). The resulting exponentiated value is

i) accumulated in the sum of the exponent register (Line 10), and ii) multiplied

with all components of the corresponding value matrix row using the other set

of d multipliers and accumulated with d adders (Line 12-13). This module

is fully-pipelined and can process a single candidate every cycle. Assuming c

candidates are selected for the query Qx by the candidate selection modules,

this module can process them in about c cycles. The resulting output vector

and the sum of exponentiated values are then passed to the output division

module when it finishes processing all selected keys for the current query.

Output Division Module. Once all (selected) keys are processed, all com-

ponents of the output vector need to be divided by the accumulated expo-

nentiated score to complete the softmax normalization. For this purpose, the

hardware first utilizes a reciprocal unit (Chapter 4.4.5) to compute the re-

ciprocal of the sum of the exponentiated score (Line 15), and then multiply

each component of the output vector with mo multipliers (Line 18-19). Since
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this module is fully pipelined, it can handle a single query every d/mo cycle.

This module operates in parallel with the rest of the pipeline (e.g., candidate

selection and attention computation modules). However, when other modules

are processing the ith query, this module is processing the (i� 1)th query.

(2) Modules for Key/Query Hash & Norm Computation

Hash Computation Module. This module is in charge of computing hashes

for the keys and the queries by performing a series of matrix multiplications as

described in Chapter 4.3.3. Specifically, if we assume the specific case presented

in Chapter 4.3.3 (i.e., utilizing three-way Kronecker products of 4⇥4 matrices

for k = d = 64), the hash computation for a vector requires a total of twelve

(4 ⇥ 4, 4 ⇥ 4) matrix multiplications (the last paragraph in Chapter 4.3.3).

Assuming mh multipliers for this unit, we carefully design the matrix multipli-

cation unit so that it fully utilizes all mh multipliers to perform this operation

and complete the hash computation in 768/mh (i.e., 3d4/3/mh) cycles. For

these matrix multiplications, this module contains 48 (3d2/3) registers, where

each register value is an element of three pre-defined (4⇥ 4) matrices for the

hash computation (i.e., A1, A2, A3 in Chapter 4.3.3). Once the matrix multi-

plications are finished, the sign bits of each component (a total of k-bits) are

concatenated and stored in the key hash memory. During the preprocessing

phase, this module computes all key hashes (768n/mh or 3nd4/3/mh cycles)

and the first query hash (extra 768/mh or 3d4/3/mh cycles). During the ex-

ecution phase, this model computes the hash value for the next query while

the rest of the pipeline (e.g., candidate selection and attention computation

module) is processing the current query.

Norm Computation Module. Norms of the keys are computed during the

preprocessing phase in addition to the hashes of the keys. The Euclidean (L2)

norm of the key vector kKyk is obtained by computing the dot product with

itself (Ky · Ky) and then taking its square root. For this purpose, instead

of having its own set of multipliers, this unit utilizes the d multipliers and

the adder tree in the attention computation module (Figure 4.5). Then, this

module utilizes its own square root units (see Chapter 4.4.5 for details) to
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compute the final result and store it in the key norm memory. In addition,

this module also identifies the maximum key norm and multiplies the trained

t by that value to compute the threshold that is used for the candidate selection

modules.

(3) Memory Modules

Key Hash/Norm Memory. These memory modules are implemented as

SRAM structures placed within the ELSA accelerator. These structures are

initialized during the preprocessing phase and then utilized by the candidate

selection module during the execution phase. Key Hash SRAM requires a to-

tal of nk/8 bytes storage, and Key Norm SRAM requires a total of n bytes

assuming an 8-bit representation for the norm. In n = 512 and k = 64 config-

uration, the key hash SRAM requires 4KB, and the key norm SRAM requires

512 bytes.

Query/Key/Value/Output Matrix Memory. These matrices are inputs

(Query, Key, Value) and output of the self-attention. They can be placed

within the ELSA accelerator using the SRAM structures. However, since the

ELSA accelerator is expected to be utilized in conjunction with a host device

such as GPUs or other neural network accelerators targeting other parts of

the neural network models, it is also possible to utilize scratchpad memory

structures in those devices (e.g., GPU shared memory) to store these matrices.

At n = 512 and d = 64, each of these matrices requires about 36KB storage

space assuming 9-bits representation (including the sign bit).

4.4.4 Pipeline Design

Pipeline Configuration. For a given n and d, this pipeline takes 3d4/3(n+

1)/mh cycles for the preprocessing. Figure 4.7 shows the high-level view of the

pipeline during the execution phase and lists each hardware module’s latency

to process a single query (also explained in Chapter 4.4.3). As illustrated in

the figure, four hardware modules can potentially bottleneck the pipeline. It

takes max(3d4/3/mh, n/Pc, c, d/mo) to process a single query when c is the

number of candidates selected by candidate selection modules. To avoid in-

64



Pc

Candidate 
Selection

Candidate 
Selection

Candidate 
Selection
Candidate 
Selection

1/Pc cycle / key
= n/Pc cycles/query

1 cycle/selected key
= c cycles/query

ith query i-1th query

3d4/3/mh

cycles/query
d/mo

cycles/query

i+1th query

Query Hash
Computation
[ mh multipliers ]

Attention
Computation

Output
Division

[ mo multipliers ]

Figure 4.7: ELSA Accelerator Pipeline During the Execution Phase.

troducing the bottleneck and maximize the throughput, one should carefully

select Pc, mh, mo to properly balance the pipeline. Specifically, it is ideal to

configure parameters in a way that modules other than the attention computa-

tion module (takes c cycles) do not become a pipeline bottleneck. For example,

if one aims to design a pipeline that can achieve up to 8⇥ speedup (i.e., it takes

n/8 or more cycles to process a query) with approximation, each of 3d4/3/mh,

n/Pc, and d/mo should be less than or equal to n/8. When d is 64, a config-

uration such as Pc = 8, mh = 64, mo = 8 satisfies this requirement as long as

n � 96. With this configuration, the achieved speedup is min(n/c, 8). That

is, the speedup is often (i.e., c � n/8) determined by the effectiveness of the

approximation scheme, which reduces the number of keys to process (i.e., c)

for the attention computation module.

Parallel Pipeline. We extend the pipeline so that ELSA can utilize multiple

attention computation modules in parallel by exploiting the fact that each

row of the key/value matrix can be processed independently. To extend the

pipeline to utilize Pa attention computation modules in parallel, the key ma-

trix, the value matrix, and the key hash/norm need to be stored in a banked

on-chip memory where each bank contains n/Pa keys, values, and key hash-

es/norms. Then, for each bank, Pc candidate selection modules and a single

attention computation module are connected so that they process the set of

keys (and values) within a single bank and compute the partial sum of the

output as well as the exponentiated score. At the end of each query, such

partial sums are passed to the output division module, which sums up these

values using an adder tree (requires an extra set of (Pa � 1) ·mo adders) and

computes the final output. To avoid a specific stage of the pipeline or the spe-
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cific phase from forming a bottleneck, pipeline configuration parameters such

as mh (# of multipliers in hash computation module) and mo (# of multipli-

ers in output division module) may need to be adjusted. This is because the

throughput of candidate selection modules and attention computation mod-

ules are increased by Pa⇥ compared to the ones shown in Figure 4.7. We find

that mh = 256 and mo = 16 work well for Pa = 4. For further throughput, the

whole ELSA accelerators (including its memory elements) can be replicated

to exploit batch-level parallelism as well (e.g., our evaluation utilizes a set of

twelve ELSA accelerators to exploit batch-level parallelism).

4.4.5 Design Details

Number Representation. The elements of key, query, value matrix are rep-

resented in a fixed-point form with a single sign bit, five integer bits, and three

fraction bits. The elements of predefined matrices for the hash computation

are represented with a fixed-point form with a single sign bit and five fraction

bits. The rest of the pipeline utilizes the minimal necessary integer bitwidth to

avoid overflow while maintaining the number of fraction bits. We use custom

floating-point representations (e.g., a single sign bit, ten exponent bits, and

five fraction bits) to represent the output of the exponent function as well

as following computations on it to cover their huge value range. We empir-

ically verified that the use of these number representations has a negligible

impact (<0.2%) on model evaluation metric loss across various models when

compared to the FP32 baseline.

Choice of n and d. n represents the maximum number of input entities

for self-attention. For a model running very small NLP micro-benchmarks like

GLUE [189], a small n (e.g., 128) is sufficient. For longer text such as question-

answering benchmarks [116, 159], a larger n (e.g., 512) is often utilized to

capture the relation between distant tokens. An even larger n (e.g., 800, 1024)

is utilized for tasks like text summarization [121], and text generation [155,

168]. For evaluation, we configure the hardware to fit the largest workload we

run, which has n = 512. We utilize d = 64, which all our evaluated models

66



originally used. ELSA accelerator can be designed for any n or d, and once

synthesized, it efficiently run with any model or input that has smaller n or d.

Choice of Hash Length k. In general, higher k results in a better approx-

imation since the estimate for the angle between two vectors becomes more

accurate. However, too large k increases i) the cost of hash computation, ii)

key hash storage area, and iii) area/power of the candidate selection modules.

For such reasons, we find that k = d is a choice that works well as long as k

is not too small (e.g., less than 16). In case where k > d, batches of orthogo-

nal vectors are utilized to generate k hash bits [102]. Since all our evaluated

workloads use d = 64, we set k = 64 as well.

Hyperparameter Tuning. Our main hyperparameter p (Chapter 4.3.5) de-

termines the degree of approximation. We recommend the user tune p with

the validation dataset so that the model maintains a user’s desirable accuracy

while improving the performance and energy efficiency. Note that this tuning

process is simple since p is a hyperparameter that (almost) monotonously in-

creases accuracy as its value decreases. Finally, a user can set p to 0 to easily

fall back to the exact version when the highest accuracy is desired.

Special Functional Units. The exponential computation unit computes e
x

with e
x = 2(log2 e)x = 2frac((log2 e)x) · 2floor((log2 e)x). For 2frac((log2 e)x), it utilizes

32-entry lookup table where fractional exponents of 2 are stored. For reciprocal

unit, a simple lookup table with 32-entry is used to obtain the reciprocal of a

floating point with 5 fraction bits. For the square root unit, a Taylor-expansion-

oriented scheme named tabulate and multiply [95, 184] is utilized.

4.5 Evaluation

4.5.1 Workloads

We evaluate several representative self-attention-oriented NN models to demon-

strate the effectiveness of the ELSA. For natural language processing mod-

els, we select three of the most popular ones: Google BERT (large) [57],

Meta RoBERTa (large) [122], and Google ALBERT (large) [118]. We utilize

open-source implementations of those models from HuggingFace [196] (BERT,
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RoBERTa), FairSeq [143] (RoBERTa), and Google ALBERT repository [70]

(ALBERT). For all three NLP models, we run Stanford Question Answering

Dataset (SQuAD) [159] 1.1 & 2.0, and RACE dataset [116], which is a large-

scale reading comprehension dataset from examinations. For RoBERTa, we

additionally run IMDB review sentiment analysis dataset [128]. In addition

to these NLP models, we also evaluate ELSA with self-attention-oriented se-

quential recommendation models such as SASRec (3-layers model) [107] and

BERT4Rec (3-layers, 2-head model) [178] with MovieLens 1M dataset [86].

4.5.2 Accuracy Evaluation

Methodology. We extend the self-attention layer in each NN model with

our approximation scheme and measure the model’s end-to-end accuracy met-

ric (i.e., F1 score for SQuAD, raw accuracy for RACE/IMDB, and NDCG

@10[194] for recommendation models) on the test set or the validation set (for

the workloads whose test set is not publicly available). For conciseness, we

simply refer to these metrics as accuracy throughout this section.

Impact of Approximation. Fig. 4.8 shows the impact of approximation on

end-to-end model accuracy (lines) as well as the portion of selected candi-

dates2 (bars) across a varying degree of approximation hyperparameter p. In

general, the small p implies conservative approximation with a relatively small

accuracy degradation, while the larger p implies more aggressive approxima-

tion. For most of the model-workloads combinations, it is possible to achieve

sub-1% accuracy loss by only inspecting less than 40% of the total entities as

candidates (i.e., p = 1). Furthermore, the figure also shows that it is possible to

achieve sub-2% accuracy loss by inspecting about 26% of the total entities on

average (p = 2). As discussed in Chapter 4.4.5, the user can experiment with

the train set or the validation set to determine the degree of approximation

(p) that provides a reasonable accuracy loss.
2Many software implementations operate with the fixed size n (e.g., 512). If the input

text has fewer than n tokens, the software implementation pads the input so that it gets n
tokens. We exclude such paddings for the normalization, and the figure shows the portion of
selected candidates among the real tokens.
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4.5.3 Performance Evaluation

Methodology. For performance evaluation, we implement a custom simulator

for ELSA that is integrated with the PyTorch/TensorFlow implementations of

the NN models. For GPU performance evaluation, we utilize a system with the

six-core Intel Xeon Gold CPU [94] and the Nvidia V100 GPU [142] with 16GB

memory. For each workload, the batch size achieving the best throughput is

selected. For ELSA performance evaluation, we use a set of twelve ELSA

accelerators, each running at 1GHz and configured as follows: Pa = 4, Pc = 8,

mh = 256, and mo = 16. We specifically evaluate twelve ELSA accelerators

so that their peak throughput (= 1.088 TOPS/accelerator ⇥ 12 ⇡ 13 TOPS)

approximately matches with the Nvidia V100 GPU having 14 TFLOPS peak

throughput (with FP323).

We select p for each NLP model-workload combination whose worst-case

accuracy loss is bounded by 1%, 2.5%, 5% to call them ELSA-conservative,

moderate, aggressive, respectively. For recommendation models, 0.5%, 1.0%,

2.0% drop in NDCG@10 metric is used to determine p for those configurations.

We also evaluate ELSA-base configuration with no approximation. Finally, we

compare ELSA configurations with an ideal accelerator, which can sustain

100% peak FP throughput at 1GHz frequency, while having the same number

(i.e., 528) of multipliers with the ELSA-base accelerator. This is effectively an

upper-bound of performance for the other matrix multiplication accelerators

without approximation.

Throughput. Fig. 4.9(a) presents the throughput of the self-attention across

different platforms. The figure shows that a set of ELSA-base accelerators

achieve substantially better throughput (i.e., 7.99-43.93⇥) than the GPU, in-

dicating that its specialized architecture can effectively accelerate the self-

attention operation. Overall, the speedup of the ELSA-base over GPU varies
3Nvidia GPUs can achieve better raw inference throughput by utilizing the FP16 format

accelerated with the tensor core. However, its iso-peak-FLOPS throughput will be lower in
this case since the actual throughput increase from FP16 inference is often much lower than
8⇥ increase in peak throughput. Thus, using FP32 throughput gives an advantage to GPU
in calculating the normalized throughput.
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across workloads and models. Variations across workloads are mostly attributa

ble to the actual number of input entities. There are some inputs where the

data has fewer entities than the maximum number of entities the model sup-

ports (i.e., n). In such cases, the GPU implementations pad the data and

perform the matrix multiplications with n rows. However, ELSA accelera-

tors (and the ideal accelerator) avoid computation for the padded rows and

achieve higher speedup. Speedup differences across NLP models for the same

dataset are mostly due to the GPU performance differences across different

models and implementations. The figure also demonstrates that the conserva-

tive, moderate, and aggressive approximation scheme enables ELSA to achieve

much higher geomean speedups over GPU (57⇥, 73⇥, 81⇥, respectively) than

the ELSA-base accelerator. We find that moderate or aggressive approxima-

tion performance is sometimes bounded by the pipeline bottleneck caused by

the candidate selection modules. Adjusting pipeline configuration parameters

such as Pc (Chapter 4.4.4) will result in extra speedups in these cases at the

expense of extra area/power.

Latency. Fig. 4.9(b) compares the average latency of performing a single

self-attention operation on various models across ELSA accelerators and the

ideal accelerator. As shown in the figure, ELSA-base latency is nearly iden-

tical (1.03⇥) to the ideal accelerator. ELSA with the approximation scheme

achieves latency reduction over the ideal accelerator by exploiting the approx-

imation opportunities. The average (geomean) normalized latency of ELSA-

conservative, ELSA-moderate, and ELSA-aggressive are 0.38⇥, 0.29⇥, 0.26⇥

of the ideal accelerator latency. Fig. 4.9(b) also shows that all workloads spend

a small amount of time on preprocessing. If a further reduction in preprocess-

ing time is desired, one can increase the mh or use multiple hash computation

modules.

Impact on End-to-End Performance. Figure 4.9 compares the through-

put and latency for the self-attention mechanism (not the end-to-end model

throughput or latency). As shown in Figure 2.6, the portion of the time spent

on self-attention varies greatly across models, sequence length (i.e., input
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Table 4.1: Area and (Peak) Power Characteristics of ELSA.

Module Name Area
(mm2)

Dynamic
Pwr(mW)

Static
Pwr(mW)

Modules for Approximate Self-attention
Hash Computation (mh = 256) 0.202 115.08 2.23

Norm Computation 0.006 9.91 0.07
32⇥ Candidate Selection 0.180 78.41 1.95

Modules for Attention Computation
4⇥ Attention Computation 0.666 566.42 7.53
Output Division (mo = 16) 0.022 11.42 0.19

Internal Memory Modules
Key Hash Memory (4KB) 0.141 139.91 1.05
Key Norm Memory (512B) 0.038 34.9 0.29

External On-Chip Memory Modules
Key/Value Mem. (36KB ea.) 0.253 167.39 2.29

Query/Output Mem. (36KB ea.) 0.193 91.03 1.72
ELSA Accelerator

ELSA Accelerator (1⇥) 1.255 956.05 13.31
External Memory Modules (1⇥) 0.892 516.84 8.02

ELSA Accelerators (12⇥) 15.06 11472.6 159.72
External Memory Modules(12⇥) 10.704 6202.08 96.24

length), and the model configuration (e.g., FFN dimension). With ELSA-

conservative’s 57⇥ average speedup, the use of ELSA accelerators makes the

time spent on self-attention to be negligible compared to the time spent on the

other operations. The ELSA-conservative accelerators achieve about 1.4-2.5⇥

end-to-end speedup across five models when the default max input length is

utilized, and 2.4-5.0⇥ speedup when the 4⇥ larger input length is utilized.

Furthermore, if other types of accelerators are utilized to accelerate the rest of

the network (e.g., FC layers), the end-to-end speedup from the use of ELSA

accelerators becomes even larger, since the portion of the time spent on the

self-attention layer becomes larger.

4.5.4 Area/Energy Evaluation

Methodology. For area and energy evaluation, we implement the ELSA accel-

erator with Chisel hardware description language [41], and perform functional

verification. Then, we synthesize, place and route the Chisel-generated Verilog
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Figure 4.11: Post-layout Image of ELSA Accelerator.

code with the 1GHz target frequency using Synopsys Design Compiler [182]

and TSMC 40nm standard cell library. For logic synthesis, we assume the fol-

lowing pipeline configuration: n = 512, d = 64, Pa = 4, Pc = 8, mh = 256,

mo = 16.

Area. Table 4.1 reports the ELSA accelerator area characteristics and Fig. 4.11

shows the layout of the ELSA accelerator. As shown in the table, the single

ELSA accelerator utilizes about 1.3mm2 area (2.1mm2 with external memory

modules), and twelve ELSA accelerators utilize about 15.1mm2 area (25.8mm2

with external memory modules). On the other hand, Nvidia V100 GPU has

a total die size of 815mm2 [141]. This implies that integrating the ELSA ac-

celerator to GPU incurs a very little area cost, and such a cost becomes even

lower considering that the reported ELSA area is estimated from the 40nm

technology node, while the Nvidia V100 GPU die area is from the 12nm tech-

nology node. Another important point from the area table is that candidate

selection modules (32 copies) utilize a relatively little area. This proves that

our approximation mechanism is very hardware-friendly.

Power and Energy Consumption. Table 4.1 shows that a single ELSA ac-

celerator consumes about 1.49W (including power consumption from the exter-

nal memory modules) and twelve ELSA accelerators consume about 17.93W at

its peak. This is substantially lower than that of the Nvidia V100 GPU, which

has 250W thermal design power (TDP). Furthermore, we measured the actual

GPU power consumption with nvidia-smi tool and confirmed that the GPU

is in fact operating at the power level very close to its peak (e.g., 240W+)

while performing the self-attention operation in our workloads. Fig. 4.10(a)

presents the energy efficiency comparison of the ELSA accelerators and the
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GPU. Combining the power efficiency (over 13⇥) and the speedup (shown in

Fig. 4.9), the ELSA-base accelerator achieves over two orders of magnitude

improvements in energy efficiency (geomean 442⇥) over the GPU for the self-

attention computation. Moreover, approximation-enabled configurations fur-

ther increase the energy efficiency improvements: 1265⇥ (conservative), 1726⇥

(moderate), and 2093⇥ (aggressive). Finally, Fig. 4.10(b) shows the energy

consumption breakdown of the ELSA accelerators. The figure shows that our

approximation scheme, despite the introduction of new hardware modules, re-

sults in the total energy reduction by significantly reducing the energy spent

on attention computation and output division modules and external memory

modules.

4.5.5 Discussion

Comparison with the A
3 accelerator. A

3 [82] is a recent proposal that

also applies approximation to the attention. However, A3 architecture has the

following key limitations that make it not well-suited for self-attention. First,

its approximation scheme requires an expensive preprocessing (i.e., sorting all

columns of the key matrix). Its preprocessing relies on external hardware (e.g.,

GPU) that incurs significant performance/energy overheads. Unfortunately,

when multiple attention accelerators are used in parallel, the preprocessing

time linearly increases while the execution time linearly decreases, to make

this preprocessing take the dominating portion of the runtime. Also, storing

the outcome of the preprocessing requires a memory that is twice larger than

the original key matrix. Second, the A
3’s approximation scheme is complex

(occupying over 1.7⇥ larger area than ELSA’s attention computation mod-

ule) and has a very low degree of parallelism. A3’s approximation scheme can

only select up to two keys (and often fewer) every cycle and is not further paral-

lelizable. This significantly limits its ability to achieve the desired accuracy on

time and prevents the use of multiple attention computation modules in paral-

lel. For example, A3 evaluation results state that it achieves a 1.85⇥ speedup

over its baseline accelerator without the approximation on the BERT model
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running the SQuADv1.1 dataset at the expense of 1.3% accuracy loss. On the

other hand, for a similar setting, ELSA-conservative/moderate configurations

achieve 2.76⇥/3.72⇥ speedup over the ELSA-base without approximation with

lower than 1%/2.5% accuracy loss. Considering this difference in baseline con-

figurations, ELSA approximate configurations achieve 5.96⇥/8.04⇥ better raw

speedup over the A
3 approximation configuration. Finally, ELSA presents a

more scalable, area-efficient attention computation module design that does

not require multiple n-element buffers.

Comparison with Google TPU. Google Tensor Processing Unit (TPU) [69]

is specialized hardware that targets neural network training as well as infer-

ence tasks. To check its effectiveness in self-attention operation, we run AL-

BERT model [118] that natively supports TPU execution on Google Cloud

TPUv2. Our experimental results show that ELSA-base achieves 8.3⇥, 6.4⇥,

2.4⇥ better (peak-FLOPS-normalized) throughput4 on self-attention opera-

tions of ALBERT running SQuADv1.1/2, and RACE datasets. For the same

workloads, ELSA-moderate achieves 27.8⇥, 20.9⇥, 8.0⇥ speedup, respectively.

For references, the measured TPU (peak-FLOPS-normalized) throughput was

5.5⇥, 6.7⇥, and 5.4⇥ better than GPU throughput for the same workloads.

NN Models with Lightweight Self-Attention. Several recent works pro-

pose changes in the NNs to reduce the computational demand of the self-

attention operation. For example, some [23, 40, 42, 49, 74, 111, 154, 156, 175,

180, 193, 198, 200, 202] augment the architecture of the self-attention layer to

efficiently capture the relation between a large number of entities. Our work

is compatible with most of them [23, 40, 74, 154, 180, 198, 202] because they

decompose a very large self-attention operation (e.g., sequence length � 4096)

into a sequence of multiple, smaller conventional self-attentions.

Moreover, ELSA is fundamentally different from these software approaches

in that it takes a more model-agnostic approach without requiring retraining,
4TPUv2 has a peak throughput of 180 TFLOPS with its bfloat16 internal representation.

We assume that it has 1/4⇥ peak throughput with FP32 (45 TFLOPS) and then compute
its iso-peak-FLOPS throughput by dividing the actual TPU throughput by 45/13 as twelve
ELSA accelerators we used for the comparison with GPU has 13 TOPS peak throughput
(instead of 180/13).
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which can be very expensive computationally on a large-scale language model.

Finally, most software-only approaches [23, 40, 111, 154, 156, 200] in fact fail to

achieve the inference speedup for reasonable sequence length (e.g., <2048), de-

spite a theoretical reduction in the number of operations. Specifically, a recent

work [193] finds that sparse attention techniques achieve very little speedup

(e.g., 20% speedup for 2% accuracy loss), and Reformer [111] fails to achieve

any speedup for sequence length less than 2048, due to its huge constant in

their time complexity. Even in the case of concurrent works achieving speedup

on the commercial hardware for sequence length <2048, their reported speedup

from approximation is around 1.3⇥-1.7⇥ [42, 193], which is far less than what

ELSA achieves with approximation.

4.6 Related Works

4.6.1 Hardware Support for Attention Mechanisms

A few hardware accelerators related to the attention mechanism are recently

proposed. A
3 is the most closely related work, which is discussed in Chap-

ter 4.5.5. MnnFast [99], Manna [174], and Mann Dataflow accelerator [148] are

also relevant in that they contain modules that can potentially be utilized to

accelerate the attention mechanism. However, their focus is on the end-to-end

hardware implementation of particular neural network models without fully

exploiting approximation opportunities, such as Google NTM/DNC [72, 73]

for Manna and Meta End-to-End Memory Network [177] for MnnFast.

4.6.2 NN Approximation with Hardware Support

There are prior works presenting various forms of approximation strategies

to improve neural network performance and energy efficiency. Specifically,

works [78, 91, 97, 98, 108, 145] investigate the efficient use of quantization and

low-precision operations for neural networks. Furthermore, other works [123,

158] propose the approximate MAC unit to achieve a similar goal. More closely

related works are ones focusing on finding values that are less likely to affect

76



the final output of the neural network models. SnaPEA [14], ComPEND [119],

ZAP [169], and RnR (Reduce and Rank) [157] are representive examples.

4.6.3 Hardware Accelerators for NN

Various hardware accelerators [31, 34, 36, 37, 59, 64, 81, 104, 105, 160] have

been proposed to accelerate key neural network operations represented as ma-

trix multiplications. Specifically, several proposals [15, 55, 84, 85, 113, 144, 209]

focus on the sparsity of the activation and weight matrices to further acceler-

ate such operations. Our work differs from these works in that i) we provide

the unique approximation scheme that dynamically sparsifies the key matrix,

and ii) specifically targets the self-attention mechanism.
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Chapter 5

Specialized Architecture for
Approximate Nearest Neighbor
Search

5.1 Overview

Product quantization similarity search is an attractive idea with many po-

tential benefits, but the existing hardware fails to fully harness its poten-

tial. We identify this algorithm as a great target for specialized hardware due

to its unique computation and data access patterns. With the goal of effi-

ciently finding the most similar vectors out of multi-billion database vectors,

we present ANNA (Approximate Nearest Neighbor search Accelerator), a spe-

cialized hardware accelerator that can substantially improve the throughput

and energy efficiency of the PQ-based approximate similarity search while

flexibly supporting various search configurations.

5.2 ANNA Hardware Accelerator

ANNA is a stand-alone hardware accelerator that can be configured to per-

form various product-quantization-based similarity searches. ANNA supports

both inner product and L2 distance search cases. Moreover, ANNA can ac-

commodate various search configurations (e.g., metric, k
⇤, |C|, M). Before

performing similarity search with ANNA accelerator, a host device first needs

to i) configure ANNA by sending a search configuration and ii) place the set

of necessary data structures in ANNA main memory (centroids C and en-

coded vectors) and ANNA’s on-chip SRAM (codebook B). Then, the host

sends a search command to ANNA with a query or a batch of queries as
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Figure 5.1: Illustration of ANNA Hardware Overview.

well as the number of similar vectors (top-k) to search for. ANNA performs a

similarity search and finally returns the result to the host device. Figure 5.1

shows the overview of ANNA hardware accelerator. At a high level, ANNA

consists of three main entities named Cluster/Codebook Processing Module

(CPM), Encoded Vector Fetch Module (EFM), and Similarity Computation

Module (SCM). Each module contains computation units, memory readers,

and SRAM blocks. When provided a query, ANNA performs three steps of

PQ-based ANNS outlined in Chapter 2.2.3.2.

5.2.1 Hardware Operations

Search Process (Step 1). The first step is cluster filtering, which is han-

dled by the Cluster/Codebook Processing Module (CPM). ANNA utilizes a

memory reader to read centroid vectors in a streaming manner, and these read

centroid vectors and the query are passed to the compute units to compute the

exact distance between two vectors. The outcome is then passed to the top-

k selection unit, which selects and holds top-|W | most similar centroid vectors.
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Search Process (Step 2 & 3)-Inner Product. The second step is lookup

table construction. In the case of the inner product, the ith lookup table Li

needs to store {qiBi[0], ..., qiBi[k⇤ � 1]}. In turn, the inner products between

each codeword in the codebook and the corresponding sub-vector of the query

are computed using the compute units, and the resulting outcome is stored in

the lookup table. Once all lookup tables are filled, the third step, similarity

computation, is performed by the SCM. The EFM loads the encoded vectors

within a cluster selected in Step 1 from main memory, unpacks them with its

unpacker hardware, and buffers them in the encoded vector buffer. The SCM

reads encoded identifiers (i.e., e0(r(x)), ..., eM�1(r(x))) in the encoded vector

buffer, and then use those identifiers as addresses to retrieve specific data

in the lookup table. The loaded values are fed to the reduction unit, which

computes the reduction outcome. Finally, the term q · c(s) is added to the

reduction outcome (see Chapter 2.2.3.2) to obtain the final similarity between

the query and an encoded vector. This similarity value, as well as the encoded

vector’s ID are passed to the top-k selection unit in the SCM. This process is

repeated for all encoded vectors in the selected clusters, and the final top-k

selected vectors in the SCM top-k selection unit are stored in memory as the

search outcome.

Search Process (Step 2 & 3)-L2 Distance. For L2 distance search, the

process is slightly different. Unlike the inner product-based similarity search,

the lookup table needs to be reconstructed for each selected cluster. The cen-

troid reader first loads the selected centroid once again from memory and

computes the difference between the query vector and this selected centroid

vector (i.e., q�c
(s)) using the compute units. Then, the contents for the lookup

table are computed, again using the compute units. At this point, the SCM

is utilized to compute the similarity between the encoded vector in the cur-

rently selected cluster and the query using the lookup table. The lookup table

construction and the similarity computation are repeated for selected clusters,

and finally, the top-k selection unit stores the top-k selected vectors in the

memory as in the inner product-based similarity search case.
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Since L2 distance search requires a lookup table to be constructed for

each selected cluster, such a process can potentially account for a substantial

amount of runtime. To improve the performance, ANNA overlaps lookup table

construction on the CPM and similarity computation on the SCM through

double buffering. Specifically, ANNA maintains two copies of lookup tables

and lets the CPM fill the lookup table for the (i + 1)th most similar cluster

while the SCM computes the approximate similarity between the query and

the database vectors for the ith similar cluster. Once both are complete, SCM

now operates for the (i+1)th most similar cluster using the lookup table that

the CPM just filled, and the CPM fills the lookup table that the SCM stopped

using. This way, lookup table construction time and similarity computation

time can overlap and effectively reduce the total query processing time.

5.2.2 Design of Hardware Modules

(1) Cluster/Codebook Processing Module (CPM)

Figure 5.2 illustrates the hardware design of CPM. This module utilizes Ncu

compute units to perform various computations. Overall, this module is uti-

lized for three purposes: 1 to compute the similarity between query q and

each centroid in C during the cluster filtering step, 2 to compute the residual

vector r(x) = q � c
(s) for the L2 distance search, and 3 to compute the sim-

ilarity between each codeword and the query (inner product) or residual (L2

distance).

Mode 1 - Similarity Computation for Cluster Filtering. For the first

case, the goal is to compute s(q, c) between query q and every c in C. Every

cycle, an element of the query vector is broadcasted into Ncu compute units and

used as an operand. At the same time, an element of Ncu different centroids is

supplied to each compute unit every cycle. Then, depending on the metric, the

partial similarity (i.e., q[i]c[i] or (q[i]�c[i])2) is accumulated at the last register

of the compute units. Assuming D-dimensional query vector and centroids

vector, this module requires D cycles to compute the similarity between the

query vector and Ncu centroids. To complete the cluster filtering step, this
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Figure 5.2: Illustration of ANNA Cluster/Codebook Processing Module.

module overall requires D|C|/Ncu cycles.

Mode 2 - Vector Subtraction for Residual Computation on L2 Dis-

tance Search. For the second case, this module performs a vector subtraction

(q� c
(s)). Every cycle, different elements of each query, as well as the selected

centroid vector (i.e., c(s)), are sent to different compute units. For example, q[0]

and c
(s)[0] are sent to the first compute unit, and q[Ncu � 1] and c

(s)[Ncu � 1]

are sent to the last compute unit. The resulting outcome is stored in the resid-

ual register. Since each cycle processes Ncu elements of D-dimensional vector,

this module processes residual computation in D/Ncu cycles.

Mode 3 - Similarity Computation for LUT Construction. For the last

case, the module is responsible for computing the values that will be stored in

the lookup table. In this case, a single compute unit (CU) is responsible for

computing all values that will be stored in one lookup table Li. Specifically,

in each cycle, an element of the different query sub-vectors (e.g., q0, ..., qM�1)

is supplied to each compute unit. Also, a codeword from each codebook is

supplied to different compute units. Each compute unit then utilizes these two

values to compute the value that is stored in the lookup table. Over the first

D/M cycles, the ith compute unit computes the value for Li[0] by utilizing

sub-vector qi and Bi[0]. This process is repeated for k
⇤ times to fill up the
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lookup tables, each having k
⇤ entries. A total of D/M ·k⇤ cycles are necessary

to fill up Ncu lookup tables. Since a total of M lookup table needs to be

filled up, the total number of cycles necessary to fill the whole lookup table is

D/M · k⇤ ·M/Ncu = Dk
⇤
/Ncu cycles.

(2) Encoded Vector Fetch Module (EFM)

This module is in charge of fetching encoded vectors of a selected cluster

from the main memory and then buffering the fetched data in the on-chip

buffer (named encoded vector buffer). Specifically, this module first receives

the selected cluster IDs from the top-k unit. Then, its memory reader reads the

cluster metadata (i.e., start address for the data within the cluster and the size

of the cluster) from the main memory. The following memory reader utilizes

the start address to fetch the encoded identifiers of the cluster from the main

memory. The read data is passed to the unpacker hardware, which utilizes

hardware shifters to unpack the packed data, and stores them in the encoded

vector buffer. To overlap the data fetch and the later similarity computation,

this module keeps two encoded vector buffers. When the SCM is utilizing one

encoded vector buffer, this module fetches the data for the next cluster on the

other data buffer. In some cases, a cluster’s encoded vectors may be larger

than the encoded vector buffer size. In that case, a contiguous portion of the

cluster’s data is first fetched, and the next contiguous portion of the cluster’s

data is fetched on the other buffer while the current buffer is utilized.

(3) Similarity Computation Module (SCM)

The main role of this module is to perform the approximate similarity com-

putation, which is essentially a sum reduction of data retrieved from multiple

lookup tables (See Step 3 in Figure 2.4). For this purpose, this module main-

tains lookup tables and an adder tree with Nu�1 adders so that it can reduce

Nu values every cycle. This module retrieves the set of Nu identifiers from

the encoded vector buffer. Each of these identifiers is used as an address for

a lookup table, and the total of Nu data is read from multiple lookup tables.

These read data are passed to the reduction unit, which is a pipelined adder

tree. In the case of the inner product similarity search, the reduction result is
83



added with the q · c(s) supplied from the top-k unit by an extra adder. This

module can perform similarity computation with a single database vector per

M/Nu cycles. For example, when M = 128 and Nu = 64, the module will take

two cycles to process a single entry with pipelining.

(4) Top-k Selection Unit

This unit tracks the k largest data (k = 1000 in our configuration) that this

unit has taken as inputs during its operation. Essentially, this is a hardware

priority queue. Every cycle, this unit takes a similarity score for the spe-

cific vector as an input. If the provided input is larger than the minimum of

the currently tracked ones, the input is added to the structure, and the al-

ready tracked entry with the smallest score is discarded. Otherwise, the input

is simply discarded and the structure remains intact. We implement P-heap

hardware priority queue [26], which utilizes a binary-heap-like structure for

high-throughput design. The unit consists of several SRAM buffers which can

store k data and a set of comparators. This unit is designed to process a single

input every cycle. It can also initialize its contents from the main memory or

flush its contents to the main memory. This unit also maintains two copies of

buffers so that a set of buffers can be utilized for top-k processing, while the

other set of buffers can simultaneously flush/initialize its contents to/from the

main memory.

(5) Memory Module

Memory Access Interface (MAI). MAI takes read requests from memory

readers and issues memory read requests to the memory controller. When

issuing a memory request, it reserves one of its 64B buffers and records the

requested reader ID there. Then, MAI adds an entry to its associative table

structure, which maintains the list of outstanding read addresses (as a key)

and destination buffer ID (as a value). When the memory request returns from

the main memory, it finds the matching address from the associative table and

stores the read value to the destination buffer. Every cycle, the MAI utilizes

an arbiter to forward one of the values in the MAI destination buffer to the

memory reader that issued this memory request. For memory write requests,
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MAI buffers the write data until the write completes in the main memory. In

general, this is quite similar to the MSHR in CPUs.

Memory Readers. Memory readers are in charge of issuing memory requests

through the memory access interface (MAI) and buffering the received inputs.

The reader is configured with the start address and the amount of data that it

needs to fetch from the start address. When configured, this module prefetches

the data from the start address as long as the MAI can accept its read requests.

Once the MAI returns the data for issued read requests, the module buffers

this 64B granularity read data and forwards the portion or all of the data

to the next module at the requested granularity. There are three memory

readers in ANNA. Memory readers in CPM are used to read centroid vectors,

and memory readers in EFM are used to fetch cluster metadata and cluster’s

encoded vectors.

SRAM. ANNA has three SRAM structures. First, the Codebook SRAM is

sized so that it can buffer the whole codebook which is 2k⇤D bytes (e.g., 64KB

in our evaluation). This SRAM is structured to read up to 2Ncu consecutive

bytes (e.g., 64B) data every cycle. Next, the lookup table SRAMs have a total

capacity of 2k⇤M (e.g., 32KB in our evaluation) bytes for a single SCM. It can

handle up to Nu (e.g., 64) lookups in parallel, where each lookup returns one of

k
⇤ entries. As explained above, we maintain two copies of the lookup tables to

overlap the filling of the lookup table and the similarity computation. Finally,

the encoded vector buffer is used to buffer the encoded vectors in the single

cluster. As with the lookup tables, two copies of the encoded vector buffer are

maintained to overlap data fetch and the similarity computation. The size of

this SRAM structure is a design parameter (e.g., 1MB in our evaluation). The

encoded vector buffer is structured to supply Nu data per cycle.

5.3 ANNA Memory Traffic Optimization

By design, one can easily adjust ANNA’s computation capability by adjusting

design parameters such as Ncu (the number of compute units in CPM) or Nu

(the number of entries which can be sum-reduced in a cycle). Alternatively,
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it is possible to utilize multiple copies of ANNA modules to improve ANNA’s

computation throughput. In such cases, the system’s performance bottleneck

eventually shifts to the memory bandwidth. At that point, the only way to

further improve the throughput is to reduce the traffic between ANNA and

the main memory. In this section, we present an optimization scheme that

can significantly reduce the memory traffic consumption of ANNA on batched

similarity search scenarios.

ANNA Execution w/ Data ReuseBaseline ANNA Execution
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Figure 5.3: Illustration of ANNA Memory Traffic Optimization.

The key idea is to reuse the encoded vectors for a specific cluster across

multiple queries. Figure 5.3 illustrates how this optimization can substantially

reduce the memory traffic. In the figure, we define Ci as a set of encoded vectors

in cluster i. The left of the figure shows conventional execution, where a single

query is processed at a time. In such case, a query scans the encoded vectors in

clusters belonging to W , whose centroids are closest to the query. This same

process is repeated for the following queries. On the other hand, the right

side of the figure shows the optimized execution. In this case, the set of |W |

relevant clusters for all queries are identified first. Based on that information,

queries visiting a specific cluster are identified for all clusters. Then, each

cluster is processed in series. Specifically, a specific cluster’s encoded vectors

are loaded and buffered on-chip, and queries visiting the cluster process the

cluster using the buffered data. Once all queries visiting the cluster finish

processing the cluster, the next cluster is processed for a different set of queries

visiting the next cluster. Assuming each query visits |W | clusters out of |C|
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Figure 5.4: Diagram of ANNA Hardware with Memory Traffic Optimization.

clusters, and the system processes B queries at a time, the original execution

scheme requires loading B · |W | cluster’s encoded vectors. On the other hand,

the optimized execution scheme requires loading mere |C| clusters’ encoded

vectors even in the worst case. When B = 1000, |C| = 10000, |W | = 128, this

technique leads to a 12.8⇥ traffic reduction.

5.3.1 Hardware Extensions

Recording Queries Visiting a Specific Cluster. In the baseline ANNA,

which processes a query at a time, the top-k module in CPM keeps the cluster

IDs in W and then passes the cluster ID of those selected clusters to EFM so

that EFM can fetch the encoded vectors for the selected cluster. On the other

hand, to implement the optimization represented in Figure 5.3, ANNA first

performs cluster filtering step for all queries and stores the list of queries visit-

ing each cluster in the memory. Specifically, for this purpose, ANNA maintains

an array of arrays in the main memory, where ith array keeps the IDs of the

queries visiting cluster i. Also, ANNA utilizes an on-chip SRAM whose ith

row stores the base address (8B) for the ith array in the main memory and
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the number of queries visiting ith cluster (3B) as shown in Figure 5.4.

Once top-|W | clusters for a query are identified, one of the selected cluster

IDs is retrieved from the top-k module, and this ID is used to access the

mentioned SRAM structure. The base address for the array associated with

the selected cluster is obtained, and the number of queries in this cluster is

used to compute the exact address where the query ID needs to be written.

Next, the write request is passed to MAI, which performs a masked write to

the main memory. This process is repeated for all |W | selected clusters, and

the CPM performs cluster filtering for the remaining queries.

Storing and Retrieving Intermediate Top-k Vectors. The baseline ANNA

utilizes a top-k module in SCM to track the top-k most similar vectors to

a particular query. This was possible since the baseline ANNA handles one

query at a time. However, with the optimization, the same top-k module is

now used by multiple queries processing the same cluster. As a result, once

a query processes a cluster’s data, its intermediate top-k results need to be

stored in memory. In addition, before a query processes a cluster’s data, the

intermediate top-k results need to be loaded from the memory so that the top-

k module correctly identifies whether the vectors in the currently processed

cluster belong to top-k or not.

Improving Throughput with Multiple SCMs. Reduction in memory traf-

fic means that more computations can happen without being bounded by

the memory bandwidth. To improve the throughput, ANNA utilizes multiple

SCMs (NSCM ) in parallel. Figure 5.4 shows the hardware extensions to support

multiple SCMs. Encoded vector buffers in EFM are structured accordingly to

supply data from EFM to SCMs at a higher rate. Also, a configurable cross-

bar switch is added to connect multiple encoded vector buffers with multiple

SCMs. There are two different ways to utilize multiple SCMs at once. First,

SCMs can be used to process multiple queries processing the same cluster in

parallel (inter-query parallelism). In this case, the EFM simply broadcasts the

same encoded vector to all SCMs so that each SCM having different, query-

specific LUT content can process the data for each query. Alternatively, it is
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possible to allocate multiple SCMs to a single query (intra-query parallelism).

For this purpose, each encoded vector buffer, storing a portion of the clus-

ter’s encoded vectors, passes data to different SCMs. In this case, each SCM

then processes a subset of the cluster’s encoded vectors with its own top-k

modules. Once all clusters are processed, each SCM’s top-k results are merged

using top-k modules.

In ANNA, a user can specify the number of SCMs that a single query

utilizes during the execution. In general, it is slightly better to utilize SCMs

across multiple queries since a single query utilizing multiple SCMs tends to

increase the traffic for saving/restoring intermediate top-k results to the main

memory. On the other hand, when a single cluster is processed by a very small

number of queries, it is better to utilize multiple SCMs for a single query so

that ANNA hardware fully utilizes its available SCMs. One can easily compute

the average number of queries for each cluster to find the required number of

SCMs per query. For example, when B = 1000, |C| = 10000, and |W | = 40,

4 (= B|W |/|C|) queries are expected for each cluster. Thus, for ANNA with

16 SCMs, we allocate four SCMs to a single query.

5.3.2 ANNA Execution with Optimization

Figure 5.5 visualizes the timeline for each compute module in ANNA (i.e.,

CPM and multiple SCMs) as well as its memory system in a steady-state

(i.e., Step 2 and 3 of the search process outlined in Chapter 5.2.1). When

the SCMs perform similarity computation for the ith cluster (takes |Ci|M/Nu

cycles), multiple things happen in parallel. First, the CPM works on lookup

table construction for the (i+ 1)th cluster in the case of the L2 distance sim-

ilarity search, which requires the CPM to compute the lookup table for every

cluster. Constructing a lookup table takes k
⇤
D/Ncu cycles and when there

exist Nscm SCM modules each running a different query, the CPM needs to

construct Nscm separate lookup tables in NscmDk
⇤
/Ncu cycles. Meanwhile,

on the memory side, each top-k unit in SCMs stores the intermediate top-k

results from its previous operations to the main memory and loads the inter-
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mediate top-k results from the main memory for its upcoming operations. The

memory traffic is 2kNSCM · 5B, since each top-k unit in SCM loads/stores k

entries which are 5B each (3B for vector ID, 2B for similarity score). Also,

the EFM prefetches the encoded vectors for the cluster, which are |Ci+1| en-

coded vectors each represented with M identifiers that are log2 k
⇤ bits each.

Overall, the computation time for the specified time period in the figure is

max(Nscmk
⇤
D/Ncu, |Ci|M/Nu) cycles, and 10kNSCM + (M log2 k

⇤
/8) · |Ci+1|

bytes needs to be fetched during this time. One should carefully set ANNA

design parameters (e.g., Nu, Ncu, Nscm) so that the system is not heavily bot-

tlenecked by computations or memory accesses.

5.4 Evaluation

5.4.1 Methodology

Dataset. We evaluate on representative similarity search datasets: SIFT1M

[101] (N=1M, D=128, L2 Distance), Deep1M [20] (N=1M, D=96, L2 Dis-

tance), GloVe [151] (N=1M, D=100, Inner Product), SIFT1B [101] (N=1B,

D=128, L2 Distance), Deep1B [20] (N=1B, D=96, L2 Distance), and TTI1B [1]

(N=1B, D=128, Inner Product). In general, each vector within these datasets

represents an embedding of an image feature or a word.

Software ANNS Implementations. We utilize two representative open-

source implementations of PQ similarity search algorithms: Meta Faiss [103]

and Google ScaNN [77]. Both algorithms utilize different objective functions

to train codebook and thus generate different codebooks as well as the encod-

ing for each database vector. Faiss has both CPU and GPU implementations,

and ScaNN only has CPU implementation. We train each dataset for each

algorithm across varying configurations and obtain trained models where each

is a set of i) a list of centroids, ii) codebooks, and iii) encoded vectors. We

run Faiss or ScaNN similarity search with the trained models on 8-core Intel

i7-7820X with 128GB memory (both Faiss and ScaNN) and NVIDIA V100

GPU [142] with 32GB memory (Faiss) to measure their performance, energy

consumption (measured with Intel RAPL & nvprof), and model recall X@Y
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(i.e., the portion of retrieved top X items among submitted Y candidates).

Specifically, throughout the evaluation, we utilize the following search con-

figurations: Faiss16 (CPU), Faiss256 (CPU), Faiss256 (GPU), and ScaNN16

(CPU). Here, the number after Faiss or ScaNN (i.e., 16 or 256) represents the

k
⇤ value that the configuration utilizes. ScaNN does not support k⇤ = 256 con-

figuration, and FaissGPU does not support k
⇤ = 16 configuration since their

implementations are tightly coupled with the specific k
⇤. Throughout the ex-

periment, we use |C| = 10000 and |C| = 250 for billion-scale and million-scale

datasets, respectively, and M varies across experiments.

ANNA Evaluation Methodology. For performance comparison of ANNA

with the software implementations, we implement a custom cycle-level sim-

ulator for ANNA. We evaluate four ANNA configurations, each utilizing the

trained model from the corresponding software implementations. We com-

pare the throughput/latency of queries at a given search recall, which is our

quality metric. Each ANNA configuration is assumed to be paired with the

memory system providing the 64GB/s bandwidth, which is identical to the

evaluated CPU-based system’s memory bandwidth. For the area and energy

evaluation, we implement the ANNA accelerator with Chisel HDL [41], and

perform functional verification with Synopsys VCS. Then, we synthesize RTL

implementations of the ANNA with the TSMC 40nm GP standard cell library

with 1GHz frequency to obtain its area and power consumption. Then, we

post-process power consumption from each component to obtain the system

energy consumption. ANNA design parameter is set as follows: Ncu = 96,

NSCM = 16, and Nu = 64. ANNA can support both k
⇤ = 16 and k

⇤ = 256.

5.4.2 Performance Evaluation

Throughput Improvements. Figure 5.6 shows the throughput comparison

of ANNA and several software ANNS implementations across different configu-

rations and workloads. Each configuration is represented as a solid or a dotted

line because the model recall changes across user-specified search parameter

W , the number of clusters inspected. The higher W means higher recall at
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the expense of lower throughput. The upper six plots in Figure 5.6 show the

results for 4:1 compression ratio, meaning that the main memory needs to hold

one-fourth of the original data size, which is 0.5N bytes. For k
⇤ = 256 config-

urations which represent a single vector element as log2k
⇤ = 8 bits, M = D/2

is utilized to compress the data by 4⇥. On the other hand, for k
⇤ = 16 con-

figurations, which represent a vector element as 4 bits, M = D is utilized to

compress the data by 4⇥. Similarly, the lower six plots in Figure 5.6 show the

results for the 8:1 compression ratio. For that case, the smaller M (e.g., D/4)

is utilized to further compress the data. In general, a higher compression rate

trades off model recall for less memory usage.

The figure shows that ANNA achieves substantial speedup over CPU or

GPU implementations across varying recalls. Among various CPU implemen-

tations, we find that Faiss256 (CPU) achieves lower performance than other

CPU implementations. This is because Faiss16 (CPU) and ScaNN16 (CPU)

utilize low-level code optimizations to pin 16-entry lookup tables on vector reg-

isters. On the other hand, when k
⇤ = 256, 256-entry lookup tables do not fit on

vector registers, and thus the Faiss256 (CPU) achieves much lower speedup.

Between Faiss16 (CPU) and ScaNN16 (CPU), Faiss16 (CPU) achieves better

performance since Faiss16 (CPU) implementation processes queries in a way

that is similar to ANNA memory traffic optimization represented in Figure 5.3.

ANNA implementation of Faiss16 outperforms Faiss16 (CPU) while consum-

ing a much smaller area and energy (presented in the following section).

The major drawback of Faiss16 or ScaNN16 configuration is that the use

of k⇤ = 16 sometimes fails to achieve high recall on challenging scenarios. For

example, on Deep1B dataset (8:1 compression ratio), all k⇤ = 16 configurations

cannot achieve recall beyond 0.9. Moreover, although not presented in the

figure, those configurations fail to achieve 0.5 recall on 16:1 compression ratio

scenarios for the same dataset. The same issue is observed in TTI1B dataset

(8:1 compression ratio), but only with Faiss16 in this case. On the other hand,

Faiss256 (CPU) can achieve substantially better maximum recall, but is much

slower. Unlike those software implementations, Faiss256 (ANNA) can provide
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a very high recall and throughput at the same time. Finally, Faiss256 (GPU)

shows very promising performance in some cases. However, this is because

the V100 GPU has 900 GB/s memory bandwidth. For the fair comparison,

we compare Faiss256 (GPU) with the Faiss 256 (ANNA ⇥12), which utilizes

twelve ANNA instances, each paired with a 75GB/s memory system. It is

clear that ANNA ⇥12 achieves a substantially larger throughput than the

V100 GPU.

Impact of ANNA Memory Traffic Optimization. We compare through-

put of ANNA without optimization and ANNA with memory traffic optimiza-

tion (Chapter 5.3). On average (across multiple datasets), ANNA with the

memory traffic optimization achieves 5.1⇥/5.0⇥/6.9⇥ throughput compared

to ANNA without the optimization for ScaNN16/Faiss16/Faiss256 configura-

tions on 4:1 compression rate cases, respectively. Similarly, the extra speedup

from optimization is 3.9⇥/3.9⇥/4.6⇥ on cases with the 8:1 compression ra-

tio. Memory traffic optimization reduces the total amount of memory traffic

and significantly improves performance in scenarios where the throughput is

memory-bound. The additional performance gains are greater at the 4:1 com-

pression ratio as it generates more memory traffic than 8:1 compression ratio,

and thus it is more memory bandwidth-bound. It is also possible to apply

the idea of ANNA memory traffic optimization to software schemes. As dis-

cussed before, Faiss16 (CPU) already utilizes a conceptually similar data reuse

optimization technique to achieve better performance than ScaNN16 (CPU).

However, such techniques are often very challenging to implement on CPUs

since they lack a mechanism to pin the loaded data to their on-chip memory

(i.e., cache).

Latency Improvements. Figure 5.7 compares the average latency of pro-

cessing a single query between ANNA and the other workloads on configu-

rations whose compression ratio is 4:1. The figure shows that ANNA enables

very low-latency processing of similarity search queries. For example, ANNA

achieves high recall (0.8+) at sub-ms latency in billion-scale datasets. On

the other hand, the fastest CPU/GPU implementations achieve such recall
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Figure 5.7: Latency Comparison of ANNA and Various Software ANNS Im-
plementations. Y-axis represents the latency for a single query represented in
a log scale. Lower is better. (4:1 compression ratio).

around 5-10ms latency. Overall, ANNA reduces an average query latency by

10.5⇥/10.7⇥/56.2⇥/13.5⇥ over ScaNN16(CPU)/Faiss16(CPU)/Faiss256(CPU)

/Faiss256(GPU), respectively. This demonstrates that ANNA exploits intra-

query parallelism more effectively than the others.

5.4.3 Area/Energy Evaluation

Area. Table 5.1 reports the ANNA accelerator area usage. We find that a

large portion of ANNA modules’ area results from their SRAM structures. A

single ANNA accelerator requires a 17.51mm2 area at 40nm technology. In

comparison, the evaluated CPU die size is 325.4mm2 at 14nm technology [6]

(effectively 151⇥ larger), and the GPU die size is 815mm2 at 12nm technol-

ogy [142] (effectively 517⇥ larger).

Power and Energy Consumption. Table 5.1 shows that a single ANNA

accelerator consumes about 5.398W at its peak. In practice, not all modules

are fully utilized at the same time, and thus the actual power usage (2-3W)
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Table 5.1: Area and (Peak) Power of ANNA.

Module Name Area (mm2) Peak Pwr(W)
Codebook/Cluster Processing Module 1.17 0.391

Encoded Vector Fetch Module 2.87 1.065
Similarity Computation Module (16⇥) 13.30 3.795

Memory Access Interface (MAI) 0.17 0.147
ANNA Accelerator 17.51 5.398

ANNA Accelerators (12⇥) 210.12 64.776

�� �� �� �� �� ��1773.2 2744.9 1668.9 2269.0 2105.6 3494.9

Figure 5.8: Normalized Energy Efficiency of ANNA over Corresponding
CPU/GPU Implementations. (4:1 compression ratio, W = 32 configuration).

is lower than the peak. We also measure the GPU and CPU power consump-

tion. Their power vary across datasets and configurations, but on average, the

CPU utilizes 116W/139W power (ScaNN/Faiss), and the GPU utilizes 151.8W

power during their operations. Figure 5.8 presents the energy efficiency com-

parison between ANNA accelerator and corresponding CPU/GPU implemen-

tations on a specific configuration. Combining the substantially lower power

consumption and runtime reduction, ANNA achieves orders of magnitude en-

ergy efficiency improvements (97⇥+ across all configurations) over both CPU

and GPU. The main sources of energy efficiency are i) the use of specialized

computation modules and memory structures, ii) the use of dataflow pipeline,

and iii) efficient data reuse.

5.5 Related Works

5.5.1 Hardware Acceleration of Nearest Neighbor Search

Abdelhadi et al. [12] design specialized FPGA implementation for PQ-based

ANNS, exploiting the large on-chip memory on FPGA. This design achieves
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high throughput on a million-scale dataset whose compressed vectors fit in

on-chip buffer, but is not readily applicable to billion-scale datasets. Zhang et

al. [208] also present FPGA-accelerated ANNS, which achieves 50K QPS for

0.94 recall (1@10) on SIFT1M dataset. However, the configuration used for

this result cannot achieve high recall (e.g., over 90%) for most of the billion-

scale datasets. Note that, for a similar recall on the same dataset, ANNA

achieves around 256K QPS with a single accelerator instance, which uses mul-

tiple orders of magnitude smaller area, energy, and on-chip SRAM.

Both FPGA implementations lack ANNA’s data reuse optimization pre-

sented in Chapter 5.3 and thus cannot efficiently utilize the limited off-chip

memory bandwidth. Moreover, they use their own ANNS mechanism cus-

tomized for their hardware. The metric performance of those custom mecha-

nisms is not verified as rigorously as widely known software implementations

like ScaNN and Faiss. In contrast, ANNA presents a hardware accelerator that

is compatible with both ScaNN and Faiss while achieving much higher energy

efficiency and overall speedups. Gemini APU [5] is a proprietary architecture

that utilizes LSH-based ANNS. Their white paper states that it achieves 800

QPS for 0.92 recall (1@160) on Deep1B dataset, whereas ANNA achieves over

4096 QPS for a similar recall.

Note that a fair and extensive quantitative comparison of the ANNS hard-

ware accelerators is quite difficult due to the throughput-recall tradeoff. For

instance, a configuration with a relatively high compression ratio can often

achieve high throughput, but the maximum recall that can be reached by

such a configuration is relatively low. To make a meaningful comparison of

hardware platforms, it is best to evaluate the performance of the same search

configuration (e.g., M , k
⇤, |W |, etc.) across different hardware as in Chap-

ter 5.4.

In addition, several prior works accelerate NNS in hardware, which are not

directly comparable to our work. For example, Tigris [199] targets accelerat-

ing KD-tree ANNS. The presented implementation is specific to a point cloud

registration task, which involves NNS for 3-dimensional data. KD-tree-based
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ANNS is known to have a very limited search accuracy for high-dimensional

data, and thus the presented hardware cannot be utilized for similarity search

on billion-scale embeddings where each vector has over 100-dimensions. Also,

Sun et al. [179] proposes a DSVS algorithm and FPGA-based design for 3-

dimensional NNS for a similar task. As with KD-tree ANNS, the presented

DSVS algorithm is not suitable for high-dimensional data. Danopoulos et

al. [50] utilizes high-level-synthesis-based hardware to accelerate general ma-

trix multiplication (gemm) in kmeans clustering algorithm, which is used for

the NNS index construction that needs to be performed prior to the search

process. Specifically, it targets to accelerate the process of obtaining cen-

troid vectors (i.e., c(0), ... ,c(|C|�1)), however ANNA targets the search process

that happens after obtaining centroid vectors and codebooks is done. Thus,

this work, as well as other gemm accelerators, are orthogonal to ANNA and

are not applicable to the PQ-based ANNS query processing. Finally, several

prior work [126, 131, 152] explore the hardware acceleration of exact nearest-

neighbor search. Even with the hardware support, exhaustive searches are not

a practical approach for billion-scale datasets because they require an excessive

amount of computation, off-chip memory accesses, and energy consumption.

5.5.2 ANNS Techniques

ANNS on software is a well-studied topic with a wide range of related works.

Graph-based ANNS [58, 87, 96, 129] exploit nearest neighbor graph, a graph

structure whose each node is a vector that is connected to its nearby nodes. Al-

though those algorithms achieve high performance on million-scale datasets [24],

they are impractical for billion-scale searches as they require a large graph to

be resident in memory. There exist other ANNS techniques such as ones that

utilize tree-structures [61, 136] or locality-sensitive-hashing [17, 52, 170], but

these algorithms exhibit lower performance than alternatives [24]. There ex-

ist several variants of the product quantization ANNS algorithms that aim

to improve the codebook quality. Improving codebook quality is also critical

for improving search performance because high-quality codebooks require the
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inspection of a smaller number of database vectors while maintaining a high re-

call. For that purpose, ScaNN [77] utilizes a novel object function, DPQ [112]

utilizes deep-learning-based training, and OPQ [67] applies rotation to the

original database. ANNA can support all these variations since their compu-

tation pattern for the search remains the same. ANNA can also be readily

extended to support other PQ variations such as AQ [19], which utilizes M

identifiers with each associated with D-dimensional codeword. The ANNA im-

plementation might need to be slightly extended to support some PQ-based

similarity search algorithms of the future, but we expect the core concepts and

components of the ANNA design remain relevant since almost all PQ-based

similarity search algorithms operate in a similar manner: load encoded data,

exploit lookup tables to simplify the similarity computation with the encoded

data, and select top k candidates to return.
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Chapter 6

Conclusion

6.1 Summary

Embedding is one of the most popular data types to represent complicated

information. As the size of the deep neural networks and the dataset are grow-

ing rapidly, emerging AI applications spend a significant portion of runtime

on embedding operations. Thus, it is crucial to optimize these embedding op-

erations to meet the strict constraints on throughput and energy consumption

in practical use cases. This dissertation introduces three primary challenges

these emerging AI applications are facing and provides solutions for them.

The first challenge is an increase in memory bandwidth consumption. Em-

bedding reduction operation is a representative example of operations fac-

ing this challenge. For embedding reduction operation, we introduce MERCI,

a novel memoization framework that exploits co-appearing structure among

features in a real-world dataset.

The second challenge is an increase in computation. Self-attention opera-

tion for transformer-based neural networks is a well-known computationally

heavy operation. We introduce ELSA to optimize self-attention operation,

which is a software-hardware codesign work that proposes a novel approximate

self-attention algorithm that efficiently identifies relatively less important com-

putations and hardware accelerator that supports skipping such computations

to maximize the benefit of approximation.

The third challenge is the inefficiency of the hardware. Compression-based

approximate nearest neighbor search is a representative example that suffers

performance degradation due to hardware inefficiencies. Thus, we introduce
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ANNA, which is a specialized architecture designed carefully to overcome the

inefficiencies in commodity hardwares (e.g., CPUs and GPUs).

6.2 Discussion

Sustainability. As AI applications continue to evolve at a rapid pace, with

model architectures and algorithms advancing in tandem, it is crucial to ensure

that research works in this field remain sustainable and adaptable to these

changes. Here, I will discuss the ability of my research to remain sustainable

in the face of rapid changes in the field of AI, and also discuss the challenges

that must be overcome in order to adapt to these changes effectively.

MERCI name is a software optimization technique that is easily deployable

on the existing commodity hardwares. The embedding reduction operation

that MERCI targets is an extremely simple operation that involves randomly

sparse memory access with indices, and it is a widely used operation that I

expect will remain popular in the foreseeable future, making MERCI a useful

optimization method for many applications that perform this operation. How-

ever, it should be noted that MERCI cannot be used when the contents of the

embedding tables are kept updated, such as during training.

The suitability of hardware accelerators, such as ELSA and ANNA, for

future AI algorithms may be questioned. For both, I focused on designing

modular and reusable hardware that can be easily combined and configured

with deep understanding of the data and control flow of the target algorithms

as well as providing scalable design. In particular, ELSA is compatible with

recent transformer variants that address the computational demand of self-

attention operations, such as Longformer [23], BigBird [202], and Open AI

Block-sparse [75]. ANNA also supports several variants of product quantiza-

tion algorithms, such as DPQ [112] and OPQ [67], and need only a slight

modification to support other variants, such as AQ [19].

Despite the adaptability of ELSA and ANNA to many recent algorithm

variants, there are still some algorithms that cannot be supported by these

hardware designs, and there is a possibility that future algorithms may not
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be compatible either. To address this challenge, we may need to extensively

modify the existing hardware designs or even design new customized hardware.

The key is to identify the new performance bottleneck of the new algorithm and

carefully address them while ensuring efficient support for existing algorithms.

Even though, thanks to the flexible and modular design of ELSA and ANNA,

I believe that the core concepts and components of my works will remain

relevant and impactful in the face of rapid change, while also helping to shape

the future of this actively evolving field.

In particular, in the edge device environment with strict constraints on

latency and energy consumption, extremely lightweight models have been pro-

posed as a solution, such as MobileNet [90] and EfficientNet [185]. These mod-

els are already highly optimized, making it difficult to optimize them further

and achieve significant performance improvements since there is limited room

for optimization. Although these lightweight models could still benefit from

the acceleration provided by my works, the performance improvement may

not be as effective as standard-sized models.

To achieve greater acceleration and energy efficiency improvements, it is

necessary to make modifications that leverage the unique characteristics of

lightweight models. For instance, there is a research area that focuses on pro-

viding quantization method for (ultra-)low precision self-attention [125, 167,

201], to enable efficient model processing with minimal loss of accuracy. Also,

there is plenty of dimension reduction works [132, 161, 203] that explores a

way of reducing the dimension effectively while minimizing the information

loss from the original dimension. When combined with product quantization

ANNS, it leads to a substantial reduction in D and potentially smaller m.

For such optimized cases, the current hardware accelerator designs may

be overkill in terms of processing power or memory bandwidth, which leads

to inefficient energy and resource costs. Consequently, there are new oppor-

tunities to further optimize these lightweight models through scaling down

or simplifying existing hardware accelerator designs. For (ultra-)low preci-

sion self-attention, the bitwidth of hardware units in ELSA could be narrowed
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down according to the reduced precision. This can reduce the area required for

attention computation modules, creating more space for placing additional at-

tention computation modules. As the attention computation becomes faster,

the number of hash functions may need to be reduced in order to prevent

ELSA preprocessing phase from becoming a bottleneck. This will also result

in smaller SRAM sizes (e.g., key hash/norm memory) and faster hamming

distance computation. Also, ANNA should be scaled down by reducing the

SRAM size of lookup tables, codebook and encoded vector buffer and the

size of the buffer in memory reader accordingly as m gets smaller. Also, the

number of compute units in CPM and adders in the reduction unit of SCM

could be decreased until it does not cause a performance bottleneck in ANNA

execution pipeline. By simplifying the hardware accelerators in this manner,

it might bring imbalance to the current execution pipeline and create new

performance bottlenecks. Thus, we also need to come up with a new configu-

ration to balance the execution pipeline. With modified hardware designs, it

can lead to enhanced performance in latency and energy-constrained environ-

ments. Moreover, the saved area can be utilized for various purposes to achieve

further performance improvements specifically tailored to lightweight models.

Productization. Here, I discuss the advantages and obstacles in bringing my

works to the market. The benefits of productizing my works are the notable

enhancements in throughput, latency, and energy efficiency. As AI services in

data centers have strict demands for these performance metrics, integrating

my work into products could shorten the service time, reduce energy costs,

and promote environmentally-friendly data centers.

However, there exist several challenges in productizing my work. The pri-

mary challenge in productizing ELSA and ANNA is the high cost of man-

ufacturing hardware and scaling up the designs to the datacenter level. For

ELSA, accuracy loss is another significant challenge, as it is an accuracy and

computation trade-off work by approximating the self-attention operation. As

the accuracy loss can only be determined after completing the model run for

a given hyperparameter p (which is a user-defined value between 0 and 1 that
104



sets the degree of approximation), there is no guarantee for the accuracy lower

bound. To make ELSA more accessible and adaptable to a wider range of use

cases, a solution that provides an accuracy knob to transparently control the

model’s accuracy would be beneficial. While it is challenging to provide a pre-

cise accuracy knob that can adjust the accuracy at fine-grained granularity,

there is a simple way to provide rough guidelines for setting hyperparameter

p by leveraging the threshold training process of ELSA. ELSA performs this

process to obtain layer-specific thresholds that reflect the characteristics of

each self-attention layer with a training dataset. At the same time, it outputs

the model’s train accuracy for a given hyperparameter p since it performs in-

ference with the training dataset to obtain thresholds. Normally, this process

is performed only once for a user-specified p. However, we can modify it to

repeat this process for multiple p values and provide the train accuracy result

to users. As a result, users are now allowed to observe how the train accuracy

changes according to p. This approach provides users with an approximate un-

derstanding of the model’s sensitivity to the hyperparameter p and high-level

guidelines on setting hyperparameter p to obtain desired test accuracy.

Additionally, there are recent works [172, 173, 183, 186] proposing tech-

niques that predict the impact of approximation on the overall model accuracy

based on the information about the model accuracy when approximation is ap-

plied partially to the model. Another promising future work is modifying these

prediction techniques to be tailored to ELSA by leveraging information ob-

tained from the threshold training process. For instance, BERT (large) model

we used in ELSA evaluation has 24 layers with 16 multi-head self-attention,

and the threshold training process generates 384 (24⇥16) (sub-)layer-specific

thresholds. These thresholds could be potentially used for analyzing the sen-

sitivity of each layer to the approximation. The layers with higher thresholds

tend to have very few keys having high attention scores, leading to more ap-

proximation opportunities since the majority of keys with low attention scores

will have near zero or zero values after softmax normalization. With this modi-

fied prediction technique, ELSA provides an accuracy knob by providing model
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accuracy predictions for a given hyperparameter p. However, providing an ac-

curate and transparent accuracy knob for ELSA remains an open research

question that requires further exploration.

For ANNA, another challenge in productizing and deploying ANNA in a

data center is creating an automated distributed system capable of handling

extremely large-scale datasets. This system should include a process for dealing

with datasets that are too large to fit into the memory of a single host, such as

CPU DRAM. The process involves splitting the dataset into multiple shards

that can fit into the host memory, distributing the shards to multiple nodes,

and having each node process a single shard. Each node then finds the top-k

results from its shard, and when all nodes have finished processing, the selected

top-k vectors from each node are aggregated into one node. Finally, the final

result is computed by selecting the top-k among them.

The main obstacle to productizing MERCI is to come up with an efficient

way of incorporating newly added features into the existing memoization table.

Currently, if new features are introduced, the entire offline processing phase

needs to be redone. This can be very costly for large-scale datasets used in

recommendation services by big companies. Therefore, a lightweight approach

is needed to learn the patterns of new features and update the existing clusters

incrementally without having to perform the entire offline processing phase

again. Note that MERCI does not require redoing the entire offline processing

phase in case where embedding vectors for existing features are updated.

6.3 Future Work

Accelerating Pretraining-based Language Models with Software/Ha

rdware Co-design. Following up on ELSA, I also plan to accelerate emerging

large-scale pretraining-based language models (PLMs) such as OpenAI GPT-

4 with hardware/software co-design. For this purpose, I will investigate how

to i) downsize the fine-tuned pretraining-based natural language processing

models for the specific target hardware using teacher-student method, and ii)

design the hardware accelerator that can be flexibly reconfigured for efficient
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end-to-end acceleration of such models. Specifically, I would like to address

the limitations of the existing distillation techniques. Many existing proposals

often do not have a clear understanding of the hardware and rather focus on

abstract objectives (e.g., number of parameters or operations). And for this

reason, they often fail to demonstrate the end-to-end performance or energy

efficiency benefits. In contrast, I plan to expose the underlying hardware ar-

chitecture to the model distillation technique and also augment the existing

hardware with an extension to achieve maximum benefits.

Efficient Embedding Reduction on Emerging Memory System. Fol-

lowing up on MERCI, I am planning to optimize embedding reduction op-

erations through memoization on the emerging memory system. Specifically,

MERCI exploits novel clustering algorithm to identify sets of co-occurring val-

ues (e.g., co-appearing movie genres for a single movie), and store the partial

reduction result (e.g., partial sum) for those sets in CPU memory. However,

CPU memory is a costly device thus it is not very cost-efficient to store em-

beddings and memoized partial reduction results there for large-scale recom-

mendation models. Thus, I am planning to explore the potential of storing the

partial reduction result in the emerging storage-class-memory (SCM) such as

Intel Optane DC which provides extremely high capacity at the expense of the

lower bandwidth. Considering that the memoization scheme trades off capac-

ity for fewer memory accesses, SCM is a perfect device for our purpose. The

main challenge that needs to be addressed here is i) how we can minimize the

potential performance degradation from the use of slower, lower-bandwidth

SCM memory, and ii) how we can utilize both the DRAM and the SCM effi-

ciently (e.g., use DRAM to store more frequently utilized embedding reduction

results) to accelerate the embedding reduction.

Augmenting MERCI with Bundle Recommendation. There is a re-

search domain called bundle recommendation [3, 18, 181] that explores the

concept of recommending bundles of items that are often purchased together.

For example, when recommending items to the users who are making a ham-

burger, a bundle of meat, bread, cheese, lettuce, and tomato would be sug-
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gested since there is a high probability that these users would purchase these

items together. This strategy of recommending items at a bundle level is widely

used in e-commerce marketing. Building on the work of MERCI, I plan to en-

hance MERCI by incorporating bundle recommendation. However, there are

two significant challenges that need to be addressed in this approach.

First, I conducted an experiment to investigate the relationship between

clusters of items generated by MERCI and bundles of items generated by bun-

dle recommendation [3]. To achieve this, I calculated the overlapping_ratio, de-

fined as {# of bundles with two or more items overlapping with bundles}÷{#

of bundles}, for the Clothing Shoes & Jewelry and Electronics datasets from

the Amazon Review dataset, which were used in the evaluation of MERCI.

The overlapping_ratio for both datasets was less than 10%, indicating that

the chance of items in a single bundle belonging to the same cluster is low.

To identify the reason behind this result, I checked a bundle and a cluster

that contained bracelet A. The bundle that included bracelet A also had three

other types of bracelets, while the cluster that contained bracelet A had a

pair of sunglasses and a fairy costume. This indicates that, in real-world sce-

narios, people tend to purchase other items along with a bracelet instead of

buying four different types of bracelets at once. Thus, the primary challenge

is to develop a method to adjust bundles to include items that are frequently

purchased together in the embedding reduction operation.

The second challenge pertains to the fact that bundles allow an item to

appear more than once across multiple bundles. This poses difficulties in two

aspects: i) determining whether the relevant partial sums for a given query are

in the memoization table, and ii) locating where they are stored. In contrast,

MERCI allows an item to appear in only one cluster, which is an essential

design choice that enables efficient retrieval of memoized results with minimal

additional memory accesses, maximizing the benefits of memoization. There-

fore, the challenge in this case is to devise a method to choose bundles that

are not only mutually exclusive but also contain items that frequently occur

together during the embedding reduction operation.
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