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Abstract—Similarity search or nearest neighbor search is a
task of retrieving a set of vectors in the (vector) database that
are most similar to the provided query vector. It has been a
key kernel for many applications for a long time. However, it is
becoming especially more important in recent days as modern
neural networks and machine learning models represent the
semantics of images, videos, and documents as high-dimensional
vectors called embeddings. Finding a set of similar embeddings
for the provided query embedding is now the critical operation
for modern recommender systems and semantic search engines.
Since exhaustively searching for the most similar vectors out of
billion vectors is such a prohibitive task, approximate nearest
neighbor search (ANNS) is often utilized in many real-world use
cases. Unfortunately, we find that utilizing the server-class CPUs
and GPUs for the ANNS task leads to suboptimal performance
and energy efficiency. To address such limitations, we propose
a specialized architecture named ANNA (Approximate Nearest
Neighbor search Accelerator), which is compatible with state-of-
the-art ANNS algorithms such as Google ScaNN and Facebook
Faiss. By combining the benefits of a specialized dataflow
pipeline and efficient data reuse, ANNA achieves multiple
orders of magnitude higher energy efficiency, 2.3-61.6× higher
throughput, and 4.3-82.1× lower latency than the conventional
CPU or GPU for both million- and billion-scale datasets.

Keywords-Similarity Search; Hardware Accelerator; Approx-
imate Nearest Neighbor Search; Product Quantization

I. INTRODUCTION

A naı̈ve text search engine may find that the query

computer architecture is more related to Gothic architecture
than hardware accelerator, mainly because the term Gothic
architecture shares a word with the query while hardware
accelerator does not. Fortunately, this is not the case in

modern search engines. The recent advancements in machine

learning technologies enable the computer to semantically

understand the query so that it can effectively retrieve the

most relevant results.

A variety of modern machine learning and neural network

algorithms represent an entity as a learned high-dimensional

vector or embedding. For example, Word2Vec [1] represents

words as dense vectors in a way that semantically similar

vectors are located closer in the vector space. Similarly, it is

possible to learn the vector representation of sentences [2],

images [3], [4], videos [5], and many others. With such

embeddings, the task of retrieving entities that are similar to

the query becomes finding a set of vectors that are close to

the query embedding vector in the vector space. This task is

often called similarity search or nearest neighbor search.

The most popular application of NNS is recommender

systems. For example, YouTube recommender systems first

utilize NNS to identify a set of candidate videos for a specific

user and then use a separate, heavy deep neural network to

select top recommendations [6]. Similarly, NNS is often

used to efficiently identify a set of candidates [7] for CTR

(Click-Through-Rate) prediction models, such as Facebook

DLRM [8], Google DCN [9], and Alibaba BST [10].

Moreover, similarity search is used for conventional search

engines such as Microsoft Bing [11], and can also be used

for multimedia search services where a user provides image

or audio input to find similar ones.

The broad applicability of similarity search has motivated

many researchers in academia and industry to explore various

similarity search algorithms. For example, Facebook designed

and maintains a library for similarity search named Faiss [12]

and Google also recently released a similarity search library

named ScaNN [13]. Microsoft [14], Yahoo Japan [15] also

have their own similar search libraries. However, exhaustively

inspecting every vector in the database and computing

the similarity between the query vector and the candidate

vector requires a large amount of computation as well as

memory accesses. Therefore, most existing similarity search

implementations utilize approximate nearest neighbor search

(ANNS) algorithms which require much less computation as

well as memory accesses at the expense of a slight reduction

in search accuracy.

There exist various ANNS algorithms such as hash-

based ones [16], [17], graph-based ones [18]–[20], and

compression-based ones [12], [13], [21]. Among these

solutions, compression-based ones are the most popular

choice for billion-scale search scenarios. Graph-based ones

and hash-based ones are very effective for million-scale

searches (e.g., finding similar movies), but they are not

well-suited for billion-scale searches where their memory

requirement (i.e., whole dataset as well as their large index

structures) often exceeds the main memory size. On the other

hand, compression-based schemes can often fit necessary

data in the main memory since they only need to hold

the compressed version of the dataset and a lightweight

index structure. Compression-based schemes have drawn
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a lot of attention from both academia and industry for

their capabilities to handle billion-scale searches effectively.

Some recent work [22]–[25] explores ways to optimize

and refine compression-based similarity search and major

industry players like Google and Facebook have released their

compression-based similarity search libraries as open-source

software [12], [13]. Considering the ever-increasing data size,

we expect the compression-based schemes to continue to be

the most dominant scheme in the foreseeable future.
Unfortunately, we find running such compression-based

ANNS schemes on conventional hardware (CPU or GPU) sub-

optimal due to its specific computation pattern that heavily

utilizes memoization. For CPUs, the sources of inefficiency

are twofold: (1) application’s lack of control on the on-chip

memory usage makes it difficult to keep the memoization

results and frequently reused data on-chip, incurring further

main memory accesses, and (2) CPU’s ability to support

dynamic control flow or dynamic extraction of instruction-

level parallelism incurs extra energy overhead on ANNS

scheme, which has relatively static control flow and easy-

to-extract parallelism. On the other hand, on GPUs, (1)

shared memory usage from the memoization table limits

the GPU parallelism (i.e., the number of thread blocks

scheduled for each streaming multiprocessor (SM)) and incurs

resource underutilization, and (2) the low arithmetic intensity

computation pattern results in gross underutilization of GPU

computation capability.
To address such inefficiencies, we present ANNA

(Approximate Nearest Neighbor search Accelerator), a spe-

cialized hardware for the efficient compression-based similar-

ity search algorithms. ANNA is carefully designed to support

various compression-based similarity search algorithms and

thus is directly compatible with existing software libraries

such as Facebook Faiss and Google ScaNN. With ANNA,

finding vectors similar to a query vector out of billion vectors

requires substantially less time and energy compared to the

CPU and GPU implementations at a fraction of their chip

area. Below are the key contributions of our work.

• We provide an in-depth analysis of PQ-based ANNS

and its inefficiencies on conventional CPUs and GPUs

(Section II).

• We present ANNA, a specialized architecture for ANNS

which can accelerate compression-based ANNS al-

gorithms such as Facebook Faiss [12] and Google

ScaNN [13] (Section III).

• We introduce a memory traffic optimization technique

for ANNA, which reduces the memory traffic and

improves performance through efficient data reuse

(Section IV).

• We evaluate ANNA on multiple billion-scale workloads.

ANNA improves the energy efficiency by multiple orders

of magnitude (97×+) and the search throughput and

latency by 2.3-61.6× and 4.3-82.1× compared to the

conventional CPU and GPU (Section V).

II. BACKGROUND AND MOTIVATION

A. Similarity Search

Similarity search is a task of finding top-k vectors in a

given set (i.e., database vectors) that are the most similar to

a query vector. It is also called the nearest neighbor search

(NNS) problem. Various similarity functions can be used to

define the similarity between vectors. Among them, the most

common similarity metrics are inner product similarity and

L2 distance similarity shown in the equation below.

sip(q, x) =
∑D−1

i=0 q[i]x[i] = ‖q‖‖x‖ cos θ (Inner Product)

sL2(q, x) = −
∑D−1

i=0 (q[i]− x[i])2 (L2 Distance)

Similarity Metrics. Inner product is one of the most popular

similarity metrics. Here, a similarity s(q, x) between two

D-dimensional vectors q and x is defined as the dot product

of those two vectors. This metric is used for computing the

similarity between embeddings, and the NNS using the inner

product is called Maximum Inner Product Search (MIPS).

L2 distance between vector q and x is computed as the

sum of the squared value of each dimension’s difference.

Geometrically, this is the squared value of the length of the

line connecting two points defined by each vector. Since L2

distance is technically a dissimilarity metric, the negative

of squared L2 distance is utilized as a similarity metric, as

shown in the above equation. A common use case of L2

distance search is image similarity search.

Approximate Similarity Search. The most naı̈ve way to

perform a similarity search is to compute the similarity

between the query vector and all database vectors, then sort

the similarities to obtain k vectors with the highest similarity.

Assuming N database vectors having D dimensions, this

requires ND multiply-and-add operations and 2ND bytes

memory accesses, assuming 16-bit datatype for each vector

element. The cost of this operation becomes prohibitive

when N is large (e.g., a billion). To avoid this problem,

many approximate similarity search algorithms (ANNS) have

been proposed [12], [13], [18], [26]–[29]. Such algorithms

can significantly reduce the amount of computation as well

as the memory accesses. However, the main problem with

most of those solutions is that they still require all data as

well as additional index structures to be resident in memory.

The dataset itself is 256GB, when N is a billion and D is

128. This only fits in a relatively large single node machine.

Moreover, many ANNS algorithms also require additional

O(N) memory capacity for index structure [30]. To avoid

such huge capacity requirements, compression-based ANNS

algorithms have been proposed. Such algorithms encode the

original data in a compressed form and utilize the compressed

form to compute the similarity between the query and the

database vectors. Since these algorithms do not require the

original, uncompressed vectors to be kept in memory, they

require much less memory capacity and are better suited for

large-scale datasets.
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B. Product Quantization (PQ)

Figure 1. Illustration of Product Quantization.

Encoding. A product quantization scheme encodes each

database vector into a compressed form as shown in Figure

1. For this purpose, it first divides a vector into multiple sub-

vectors. For example, a D-dimensional vector x is represented

as a concatenation of M sub-vectors x0, x1, x2, ..xM−1

where each xi is a D/M -dimensional vector. In the figure,

1 we assume D= 6 and M = 3, so each sub-vector is a

2-dimensional vector. Then, the product quantization scheme

encodes each sub-vector into an identifier and represents

the vector as a concatenation of identifiers. To obtain a

corresponding identifier for each sub-vector, the product

quantization scheme uses a set of vectors named codebook.

A separate training/learning process obtains codebooks

B0, ..., BM−1, one for each D/M dimension, and each

codebook consists of k∗ codeword vectors, each having

D/M dimension. The figure shows M = 3 codebooks of

k∗=4 codeword vectors each. There exist various algorithms

to obtain codebooks [12], [13], [31], [32], and the quality

of the codebook affects final search accuracy. Using a

codebook Bi, a sub-vector xi is encoded into an identifier. 2

Specifically, product quantization scheme first computes the

similarity between a sub-vector xi and each codeword vector

in the codebook Bi (i.e., Bi[0], ...Bi[k
∗ − 1]). Eventually,

the codeword with the highest similarity is selected.

Assuming Bi[j] is selected, xi is now represented as

ei(x) = j. 3 Repeating this process for each sub-vector

xi, the vector x is now represented as a concatenation of

x′ = e0(x), ..., eM−1(x) where 0 ≤ ei(x) < k∗. Assuming

that the original datatype is 2 bytes (float16) per vector

element, the original vector requires 2D bytes storage. With

this encoding, each ei(x) is represented with log2 k
∗ bits,

and the total number of bytes for the encoded vector x′ is

M log2 k
∗/8 bytes. In the figure, original vector x requires

12 bytes storage, but with encoding, it only requires less than

1 byte (e.g., 6/8 bytes). While the choice of smaller M and

k∗ significantly improves the compression rate, too much

compression can negatively affect search accuracy.

Approximate Similarity Computation. To compute the

approximate similarity between each encoded vector x′

and a given query q, the PQ scheme utilizes the encoded

identifier ei to obtain the corresponding codeword from

codebook Bi. Then, the decoded vector is represented

as a concatenation of B0[e0(x)], ...BM−1[eM−1(x)] where

Bi[ei(x)] is a D/M -dimensional vector. The similarity

between this D-dimensional decoded vector and the query

vector (q0, ...qM−1 where qi is a D/M -dimensional sub-

vector) is computed as shown below. This process is repeated

for all encoded vectors, and the top-k most similar vectors

can be obtained.

sip(q, x
′) =

∑M−1
i=0 qiBi[ei(x)] (Inner Product)

sL2(q, x
′) = −∑M−1

i=0 ‖qi −Bi[ei(x)]‖2 (L2 Distance)

Efficient Similarity Computation with Memoization. In

the above equations, an inner product similarity computation

requires D multiplications and D−1 additions. Similarly, a

L2 distance similarity computation requires D subtractions,

D multiplications, and D−1 additions. These are repeated

for all N database vectors. Carefully inspecting the above

equations, we can see that it is more efficient to memoize

{qiBi[0], ... , qiBi[k
∗ − 1]} (inner product) or {−‖qi −

Bi[0]‖2, ... ,−‖qi−Bi[k
∗− 1]‖2} (L2 distance), and reuse

them across different database vectors. Assuming those k∗

values are memoized in a lookup table Li (for all 0 ≤ i < M ),

the above similarity computation equation changes to the

following for both the inner product similarity and the L2

distance similarity.

s(q, x′) =
∑M−1

i=0 Li[ei(x)]

With this memoization, computing the similarity between

q and x′ only requires M lookup table references and

M − 1 additions. To construct the lookup table for inner

product similarity, k∗D multiplications and k∗(D − 1)
additions are necessary. Similarly, the L2 distance similarity

computation requires k∗D subtractions, k∗D multiplications,

and k∗(D−1) additions. In both cases, the required capacity

is 2Dk∗ bytes since there exist M lookup tables and each

lookup table Li has k∗ entries where each entry stores D/M -

dimensional sub-vector requiring 2D/M bytes storage. Note

that the size of the lookup table or the amount of computation

for construction of the lookup table is independent of N .

With a large number of database vectors, the lookup table

construction overhead can easily be amortized.

C. Two-level Product Quantization ANNS
The base product quantization scheme presented in the

previous section i) reduces the memory capacity requirement

and ii) reduces the amount of computation via memoization.

Still, it does not reduce the number of database vectors that

the similarity computation needs to be performed. As a result,

the total search time is still proportional to N . To address this

limitation, many popular similarity search implementations

adopt a two-level product quantization scheme (also called

inverted-index-based product quantization) that substantially

reduces the number of database vectors for which the distance

computation needs to be performed.
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Figure 2. Illustration of Two-level Product Quantization ANNS (L2 distance).

Encoding. In this scheme, the database vectors are first

grouped into multiple clusters using a clustering algorithm.

Technically, any clustering algorithm can be utilized, but

kmeans is the most popular choice. After clustering, a

representative point from each cluster is decided. A popular

way to obtain this representative point is simply using the

centroid of all vectors within a cluster. For cluster j, we call

the centroid vectors as c(j) ∈ RD. Then, for each database

vector x in cluster j, the residual r(x) = x−c(j) is computed.

Finally, r(x) is encoded using the product quantization

scheme explained in Section II-B to obtain r(x)′ which is a

concatenation of e0(r(x)), e1(r(x)), ..., eM−1(r(x)). Then,

these encoded vectors belonging to this specific cluster are

stored together, along with the cluster centroid vector c(j).

sip(q, x
′) = sip(q, c

(j) + r(x))

= q · c(j) +∑M−1
i=0 qiBi[ei(r(x))]

= q · c(j) +∑M−1
i=0 Li[ei(r(x))]

sL2(q, x
′) = sL2(q, c

(j) + r(x)) = sL2(q − c(j), r(x))

= −∑M−1
i=0 ‖(qi − c

(j)
i )−Bi[ei(r(x))]‖2

=
∑M−1

i=0 Li[ei(r(x))]

Similarity Computation. Such a cluster-wise encoding

scheme changes the way to compute the similarity, as shown

in the equations above. Li for inner product similarity stores

{qiBi[0], ..., qiBi[k
∗−1]} and Li for L2 distance similarity

stores {−‖(qi−c(j)i )−Bi[0]‖2, ...,−‖(qi−c(j)i )−Bi[k
∗−1]‖2},

where c(j) is one of C . For the inner product similarity,

the contents of the lookup table are invariant to the chosen

clusters and the term q · c(j) needs to be added at the end.

On the other hand, for the L2 distance similarity, the contents

of the lookup table are variant to the chosen clusters.

Search Process Step 1 - Cluster Filtering. Figure 2

illustrates three steps of two-level product quantization. Given

a query vector q, the first step to find similar vectors is cluster

selection. During this step, it computes the similarity between

vector q and all centroid vectors (i.e., c(0), c(1), ..., c(|C|−1)),

and then find the W most similar centroids as shown in the

below equation. The set of selected centroids is denoted as

W. In the figure, the most similar (in terms of L2 distance)

centroids are c(0) and c(2) and thus W = {c(0), c(2)}.
Essentially, this step excludes vectors belonging to the cluster

with centroids that are not similar to the query and hence

effectively reduce the total number of candidates.

Search Process Step 2 - Lookup Table Construction. Once

the nearby centroids are identified, the algorithm constructs

the lookup table. This process slightly differs for the two

metrics. First, for the inner product similarity, the contents

of the lookup table Li (see sip in the above equation) is

independent of the selected centroid c(s), where c(s) is one of

the selected clusters in W , and thus it is sufficient to construct

the lookup table once and reuse the table for all clusters. On

the other hand, the contents of the lookup table (see sL2 in

the above equation) are dependent on the selected centroid

c(s) and thus, the table needs to be constructed for each

cluster. The figure assumes D=6, M =3 and L2 distance

case and illustrates creating a lookup table for cluster 0.

Search Process Step 3 - Similarity Computation. Once

the lookup table is ready, the similarity computation between

the query vector q and database vector in the selected

clusters are performed. With the lookup table, each similarity

computation is simply M additions (inner product) or M−1
additions (L2 distance). The figure shows the process of

computing similarity of vector x. Assuming encoded vector

e(r(x)) is (1, 0, 2), it computes similarity by summing up

L0[e0(r(x))]+L1[e1(r(x))]+L2[e2(r(x))] which is 5. This

process is repeated for all vectors in the selected clusters,

and the top-k most similar vectors are selected and then

returned. Overall, this PQ-based ANNS can i) substantially

reduce the number of database vectors inspected by cluster-

level filtering and ii) can efficiently compute the approximate

similarity between the database vector and the query with

memoization.

D. Analysis of PQ-based ANNS on Conventional Hardware

An algorithm suits best to the specific hardware if i) the

hardware fully utilizes the available compute resources while

executing the algorithm, ii) the hardware can maximize data

reuse and iii) the hardware fully utilizes the available memory

bandwidth for data that needs to be loaded from memory.

Unfortunately, we find that this is not the case when we run

PQ-based ANNS on conventional hardware.

GPU Implementation Analysis. We profile Facebook

Faiss [12], [33], one of the most popular implementations

of the PQ-based ANNS, for GPU on NVIDIA V100 GPU.

Overall, two kernels account for most (98%) of the query

runtime. The first kernel simply performs the approximate

similarity computation using memoization. Profiling the

behavior of this kernel with Nvidia Nsight [34] tool and
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Nvidia Visual Profiler [35] reveals that this kernel fails to

effectively utilize the available GPU memory bandwidth

as well as its floating-point units. The kernel requires a

relatively large amount of shared memory per block (32KB)

to store the lookup table, and this requirement limits the

number of thread blocks scheduled on SM to three since

each SM has 96KB shared memory. The low number of

resident thread blocks per SM limits the GPU’s ability to

hide the memory latency via parallelism, which eventually

leads to a reduction in throughput. The second kernel selects

top-1000 vectors having the largest similarity out of all

vectors whose similarities are computed in the previous

kernels. Despite many optimizations in [12], this kernel has

limited parallelism (i.e., small grid size), which prevents it

from fully utilizing GPU resources. Moreover, this operation

only utilizes about 4% of the total FMA units since this

kernel is mostly about selecting top-scoring vectors without

performing much computation.

CPU Implementation Analysis. We analyze the perfor-

mance characteristics of Google ScaNN [13] and Facebook

Faiss [12] on Intel Skylake-X 8-core CPU. For both cases, the

system spends most of its time on a loop that fetches encoded

vectors from the main memory and utilizes those data to read

the lookup tables and performs sum reduction of the data read

from the lookup tables. Although bottlenecks vary across

configurations, we find two major sources for performance

degradation. First, the system is often bounded by the memory

bandwidth. Specifically, since an encoded vector is only

utilized once per query with no reuse, such data do not

benefit much from the CPU cache hierarchy and consume a

large amount of system bandwidth. On certain configurations

where the memory bandwidth is not a bottleneck, the primary

source of performance degradation is its inability to deal with

sub-byte data types effectively. Specifically, when k∗=16,

a single vector element is encoded as a 4-bit integer. Since

the CPU does not have support for the 4-bit data type, it

continuously utilizes shift instructions (e.g., VPSRLW) to

process 4-bit data. Such use of excess instructions ends up

degrading the processor’s effective throughput.

III. ANNA HARDWARE ACCELERATOR

Product-quantization-based similarity search is an attractive

idea with many potential benefits, but the existing hardware

fails to fully harness its potentials. We identify this algorithm

as a great target for specialized hardware due to its unique

computation and data access patterns. With the goal of

efficiently finding the most similar vectors out of multi-

billion database vectors, we present ANNA (Approximate

Nearest Neighbor search Accelerator), a specialized hardware

accelerator that can substantially improve the throughput and

energy efficiency of the PQ-based approximate similarity

search while flexibly supporting various search configura-

tions.

Figure 3. Illustration of ANNA Hardware Overview.

A. Overview of Hardware Operations

ANNA is a stand-alone hardware accelerator that can be

configured to perform various product-quantization-based

similarity searches. ANNA supports both inner product and

L2 distance search cases. Moreover, ANNA can accommodate

various search configurations (e.g., metric, k∗, |C|, M ).

Before performing similarity search with ANNA accelerator,

a host device first needs to i) configure ANNA by sending

a search configuration and ii) place the set of necessary

data structures in ANNA main memory (centroids C and

encoded vectors) and ANNA’s on-chip SRAM (codebook

B). Then, the host sends a search command to ANNA with

a query or a batch of queries as well as the number of

similar vectors (top-k) to search for. ANNA performs a

similarity search and finally returns the result to the host

device. Figure 3 shows the overview of ANNA hardware

accelerator. At a high level, ANNA consists of three main

entities named Cluster/Codebook Processing Module (CPM),

Encoded Vector Fetch Module (EFM), and Similarity Com-

putation Module (SCM). Each module contains computation

units, memory readers, and SRAM blocks. When provided

a query, ANNA performs three steps of PQ-based ANNS

outlined in Section II-C.

Search Process (Step 1). The very first step is cluster filtering,

which is handled by the Cluster/Codebook Processing Module

(CPM). ANNA utilizes a memory reader to read centroid

vectors in a streaming manner, and these read centroid vectors

and the query are passed to the compute units to compute the

exact distance between two vectors. The resulting outcome

is then passed to the top-k selection unit, which selects and

holds top-|W | most similar centroid vectors.

Search Process (Step 2 & 3)-Inner Product. The sec-

ond step is lookup table construction. In the case of the

inner product, the ith lookup table Li needs to store

{qiBi[0], ..., qiBi[k
∗ − 1]}. In turn, the inner products be-

tween each codeword in the codebook and the corresponding

sub-vector of the query are computed using the compute
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units, and the resulting outcome is stored in the lookup table.

Once all lookup tables are filled, the third step, similarity

computation, is performed by the SCM. The EFM loads the

encoded vectors within a cluster selected in Step 1 from

main memory, unpacks them with its unpacker hardware,

and buffers them in the encoded vector buffer. The SCM

reads encoded identifiers (i.e., e0(r(x)), ..., eM−1(r(x))) in

the encoded vector buffer, and then use those identifiers as

addresses to retrieve specific data in the lookup table. The

loaded values are fed to the reduction unit, which computes

the reduction outcome. Finally, the term q · c(s) is added

to the reduction outcome (see Section II-C) to obtain the

final similarity between the query and an encoded vector.

This similarity value, as well as the encoded vector’s ID are

passed to the top-k selection unit in the SCM. This process is

repeated for all encoded vectors in the selected clusters, and

the final top-k selected vectors in the SCM top-k selection

unit are stored in memory as the search outcome.

Search Process (Step 2 & 3)-L2 Distance. For L2 distance

search, the process is slightly different. Unlike the inner

product-based similarity search, the lookup table needs to be

reconstructed for each selected cluster. The centroid reader

first loads the selected centroid once again from memory and

computes the difference between the query vector and this

selected centroid vector (i.e., q − c(s)) using the compute

units. Then, the contents for the lookup table are computed,

again using the compute units. At this point, the SCM is

utilized to compute the similarity between the encoded vector

in the currently selected cluster and the query using the

lookup table. The lookup table construction and the similarity

computation are repeated for selected clusters, and finally,

the top-k selection unit stores the top-k selected vectors in

the memory as in the inner product-based similarity search

case.

Since L2 distance search requires a lookup table to be

constructed for each selected cluster, such a process can

potentially account for a substantial amount of runtime.

To improve the performance, ANNA overlaps lookup table

construction on the CPM and similarity computation on

the SCM through double buffering. Specifically, ANNA

maintains two copies of lookup tables and lets the CPM fill

the lookup table for the (i+1)th most similar cluster while the

SCM computes the approximate similarity between the query

and the database vectors for the ith similar cluster. Once

both are complete, the SCM now operates for the (i+ 1)th
most similar cluster using the lookup table that the CPM

just filled, and the CPM fills the lookup table that the SCM

stopped using. This way, the lookup table construction time

and similarity computation time can overlap and effectively

reduce the total query processing time.

B. Design of Hardware Modules

(1) Cluster/Codebook Processing Module (CPM)

Figure 4 illustrates the hardware design of CPM. This

module utilizes Ncu compute units to perform various

computations. Overall, this module is utilized for three

purposes: 1 to compute the similarity between query q
and each centroid in C during the cluster filtering step, 2

to compute the residual vector r(x) = q − c(s) for the L2

distance search, and 3 to compute the similarity between

each codeword and the query (inner product) or residual (L2

distance).

Figure 4. Illustration of ANNA Cluster/Codebook Processing Module.

Mode 1 (Similarity Computation for Cluster Filtering).
For the first case, the goal is to compute s(q, c) between

query q and every c in C. Every cycle, an element of the

query vector is broadcasted into Ncu compute units and used

as an operand. At the same time, an element of Ncu different

centroids is supplied to each compute unit every cycle. Then,

depending on the metric, the partial similarity (i.e., q[i]c[i]
or (q[i] − c[i])2) is accumulated at the last register of the

compute units. Assuming D-dimensional query vector and

centroids vector, this module requires D cycles to compute

the similarity between the query vector and Ncu centroids.

To complete the cluster filtering step, this module overall

requires D|C|/Ncu cycles.

Mode 2 (Vector Subtraction for Residual Computation
on L2 Distance Search). For the second case, this module

performs a vector subtraction (q−c(s)). Every cycle, different

elements of each query as well as the selected centroid vector

(i.e., c(s)) are sent to different compute units. For example,

q[0] and c(s)[0] are sent to the first compute unit, and q[Ncu−
1] and c(s)[Ncu − 1] are sent to the last compute unit. The

resulting outcome is then stored in the residual register. Since

each cycle processes Ncu elements of D-dimensional vector,

this module processes residual computation in D/Ncu cycles.

Mode 3 (Similarity Computation for LUT Construction).
For the last case, the module is responsible for computing

the values that will be stored in the lookup table. In this case,

a single compute unit (CU) is responsible for computing all

values that will be stored in one lookup table Li. Specifically,

in each cycle, an element of the different query sub-vectors

(e.g., q0, ..., qM−1) is supplied to each compute unit. Also,
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a codeword from each codebook is supplied to different

compute units. Each compute unit then utilizes these two

values to compute the value that is stored in the lookup table.

Over the first D/M cycles, the ith compute unit computes

the value for Li[0] by utilizing sub-vector qi and Bi[0]. This

process is repeated for k∗ times to fill up the lookup tables,

each having k∗ entries. A total of D/M · k∗ cycles are

necessary to fill up Ncu lookup tables. Since a total of

M lookup table needs to be filled up, the total number of

cycles necessary to fill the whole lookup table is D/M · k∗ ·
M/Ncu = Dk∗/Ncu cycles.

(2) Encoded Vector Fetch Module (EFM)

This module is in charge of fetching encoded vectors of a

selected cluster from the main memory and then buffering

the fetched data in the on-chip buffer (named encoded vector

buffer). Specifically, this module first receives the selected

cluster IDs from the top-k unit. Then, its memory reader reads

the cluster metadata (i.e., start address for the data within the

cluster and the size of the cluster) from the main memory.

The following memory reader utilizes the start address to

fetch the encoded identifiers of the cluster from the main

memory. The read data is passed to the unpacker hardware,

which utilizes hardware shifters to unpack the packed data,

and stores them in the encoded vector buffer. To overlap the

data fetch and the later similarity computation, this module

keeps two encoded vector buffers. When the SCM is utilizing

one encoded vector buffer, this module fetches the data for

the next cluster on the other data buffer. In some cases, a

cluster’s encoded vectors may be larger than the encoded

vector buffer size. In that case, a contiguous portion of the

cluster’s data is first fetched, and the next contiguous portion

of the cluster’s data is fetched on the other buffer while the

current buffer is utilized.

(3) Similarity Computation Module (SCM)

The main role of this module is to perform the approximate

similarity computation, which is essentially a sum reduction

of data retrieved from multiple lookup tables (See Step 3 in

Figure 2). For this purpose, this module maintains lookup

tables and an adder tree with Nu − 1 adders so that it can

reduce Nu values every cycle. This module retrieves the set

of Nu identifiers from the encoded vector buffer. Each of

these identifiers is used as an address for a lookup table,

and the total of Nu data is read from multiple lookup tables.

These read data are passed to the reduction unit, which

is a pipelined adder tree. In the case of the inner product

similarity search, the reduction result is added with the q ·c(s)
supplied from the top-k unit by an extra adder. This module

can perform similarity computation with a single database

vector per M/Nu cycles. For example, when M = 128 and

Nu = 64, the module will take two cycles to process a single

entry with pipelining.

(4) Top-k Selection Unit

This unit tracks the k largest data (k = 1000 in our

configuration) that this unit has taken as inputs during its

operation. Essentially, this is a hardware priority queue. Every

cycle, this unit takes a similarity score for the specific vector

as an input. If the provided input is larger than the minimum

of the currently tracked ones, the input is added to the

structure, and the already tracked entry with the smallest

score is discarded. Otherwise, the input is simply discarded

and the structure remains intact. We implement P-heap

hardware priority queue [36], which utilizes a binary-heap-

like structure for high-throughput design. The unit consists

of several SRAM buffers which can store k data and a set

of comparators. This unit is designed to process a single

input every cycle. It can also initialize its contents from the

main memory or flush its contents to the main memory. This

unit also maintains two copies of buffers so that a set of

buffers can be utilized for top-k processing, while the other

set of buffers can simultaneously flush/initialize its contents

to/from the main memory.

(5) Memory Module

Memory Access Interface (MAI). MAI takes read requests

from memory readers and issues memory read requests to

the memory controller. When issuing a memory request, it

reserves one of its 64B buffers and records the requested

reader ID there. Then, MAI adds an entry to its associative

table structure, which maintains the list of outstanding read

addresses (as a key) and destination buffer ID (as a value).

When the memory request returns from the main memory,

it finds the matching address from the associative table and

stores the read value to the destination buffer. Every cycle,

the MAI utilizes an arbiter to forward one of the values in the

MAI destination buffer to the memory reader that issued this

memory request. For memory write requests, MAI buffers

the write data until the write completes in the main memory.

In general, this is quite similar to the MSHR in CPUs.

Memory Readers. Memory readers are in charge of issuing

memory requests through the memory access interface (MAI)

and buffering the received inputs. The reader is configured

with the start address and the amount of data that it needs to

fetch from the start address. When configured, this module

prefetches the data from the start address as long as the

MAI can accept its read requests. Once the MAI returns the

data for issued read requests, the module buffers this 64B

granularity read data and forwards the portion or all of the

data to the next module at the requested granularity. There

are three memory readers in ANNA. Memory readers in CPM

are used to read centroid vectors, and memory readers in

EFM are used to fetch cluster metadata and cluster’s encoded

vectors.

SRAM. ANNA has three SRAM structures. First, the

Codebook SRAM is sized so that it can buffer the whole
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codebook which is 2k∗D bytes (e.g., 64KB in our evaluation).

This SRAM is structured to read up to 2Ncu consecutive

bytes (e.g., 64B) data every cycle. Next, the lookup table

SRAMs have a total capacity of 2k∗M (e.g., 32KB in our

evaluation) bytes for a single SCM. It can handle up to Nu

(e.g., 64) lookups in parallel, where each lookup returns one

of k∗ entries. As explained above, we maintain two copies

of the lookup tables to overlap the filling of the lookup table

and the similarity computation. Finally, the encoded vector

buffer is used to buffer the encoded vectors in the single

cluster. As with the lookup tables, two copies of the encoded

vector buffer are maintained to overlap data fetch and the

similarity computation. The size of this SRAM structure is a

design parameter (e.g., 1MB in our evaluation). The encoded

vector buffer is structured to supply Nu data per cycle.

IV. ANNA MEMORY TRAFFIC OPTIMIZATION

By design, one can easily adjust ANNA’s computation

capability by adjusting design parameters such as Ncu (the

number of compute units in CPM) or Nu (the number of

entries which can be sum-reduced in a cycle). Alternatively,

it is possible to utilize multiple copies of ANNA modules

to improve ANNA’s computation throughput. In such cases,

the system’s performance bottleneck eventually shifts to the

memory bandwidth. At that point, the only way to further

improve the throughput is to reduce the traffic between

ANNA and the main memory. In this section, we present

an optimization scheme that can significantly reduce the

memory traffic consumption of ANNA on batched similarity

search scenarios.

Figure 5. Illustration of ANNA Memory Traffic Optimization.

The key idea is to reuse the encoded vectors for a specific

cluster across multiple queries. Figure 5 illustrates how this

optimization can substantially reduce the memory traffic.

In the figure, we define Ci as a set of encoded vectors in

cluster i. The left of the figure shows conventional execution,

where a single query is processed at a time. In such case, a

query scans the encoded vectors in clusters belonging to W ,

whose centroids are closest to the query. This same process

is repeated for the following queries. On the other hand, the

right side of the figure shows the optimized execution. In

this case, the set of |W | relevant clusters for all queries are

identified first. Based on that information, queries visiting

a specific cluster are identified for all clusters. Then, each

Figure 6. Diagram of ANNA Hardware with Memory Traffic Optimization.

cluster is processed in series. Specifically, a specific cluster’s

encoded vectors are loaded and buffered on-chip, and queries

visiting the cluster process the cluster using the buffered data.

Once all queries visiting the cluster finish processing the

cluster, the next cluster is processed for a different set of

queries visiting the next cluster. Assuming each query visits

|W | clusters out of |C| clusters, and the system processes

B queries at a time, the original execution scheme requires

loading B · |W | cluster’s encoded vectors. On the other

hand, the optimized execution scheme requires loading mere

|C| clusters’ encoded vectors even in the worst case. When

B = 1000, |C| = 10000, |W | = 128, this technique leads to

a 12.8× traffic reduction.

A. Hardware Extensions

Recording Queries Visiting a Specific Cluster. In the

baseline ANNA, which processes a query at a time, the

top-k module in CPM keeps the cluster IDs in W and then

passes the cluster ID of those selected clusters to EFM so

that EFM can fetch the encoded vectors for the selected

cluster. On the other hand, to implement the optimization

represented in Figure 5, ANNA first performs cluster filtering

step for all queries and stores the list of queries visiting each

cluster in the memory. Specifically, for this purpose, ANNA

maintains an array of arrays in the main memory, where ith
array keeps the IDs of the queries visiting cluster i. Also,

ANNA utilizes an on-chip SRAM whose ith row stores the

base address (8B) for the ith array in the main memory and

the number of queries visiting ith cluster (3B) as shown in

Figure 6.

Once top-|W | clusters for a query are identified, one of

the selected cluster IDs is retrieved from the top-k module,

and this ID is used to access the mentioned SRAM structure.

The base address for the array associated with the selected

cluster is obtained, and the number of queries in this cluster

is used to compute the exact address where the query ID
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Figure 7. Visualization of ANNA Execution Timeline with Optimization.

needs to be written. Next, the write request is passed to

MAI, which performs a masked write to the main memory.

This process is repeated for all |W | selected clusters, and

the CPM performs cluster filtering for the remaining queries.
Storing and Retrieving Intermediate Top-k Vectors. The

baseline ANNA utilizes a top-k module in SCM to track

the top-k most similar vectors to a particular query. This

was possible since the baseline ANNA handles one query

at a time. However, with the optimization, the same top-k
module is now used by multiple queries processing the same

cluster. As a result, once a query processes a cluster’s data,

its intermediate top-k results need to be stored in memory.

In addition, before a query processes a cluster’s data, the

intermediate top-k results need to be loaded from the memory

so that the top-k module correctly identifies whether the

vectors in the currently processed cluster belong to top-k or

not.
Improving Throughput with Multiple SCMs. Reduction

in memory traffic means that more computations can happen

without being bounded by the memory bandwidth. To

improve the throughput, ANNA utilizes multiple SCMs

(NSCM ) in parallel. Figure 6 shows the hardware extensions

to support multiple SCMs. Encoded vector buffers in EFM are

structured accordingly to supply data from EFM to SCMs at

a higher rate. Also, a configurable crossbar switch is added

to connect multiple encoded vector buffers with multiple

SCMs. There are two different ways to utilize multiple

SCMs at once. First, SCMs can be used to process multiple

queries processing the same cluster in parallel (inter-query

parallelism). In this case, the EFM simply broadcasts the

same encoded vector to all SCMs so that each SCM having

different, query-specific LUT content can process the data for

each query. Alternatively, it is possible to allocate multiple

SCMs to a single query (intra-query parallelism). For this

purpose, each encoded vector buffer, storing a portion of the

cluster’s encoded vectors, passes data to different SCMs. In

this case, each SCM then processes a subset of the cluster’s

encoded vectors with its own top-k modules. Once all clusters

are processed, each SCM’s top-k results are merged using

top-k modules.
In ANNA, a user can specify the number of SCMs that a

single query utilizes during the execution. In general, it is

slightly better to utilize SCMs across multiple queries since

a single query utilizing multiple SCMs tends to increase the

traffic for saving/restoring intermediate top-k results to the

main memory. On the other hand, when a single cluster is

processed by a very small number of queries, it is better

to utilize multiple SCMs for a single query so that ANNA

hardware fully utilizes its available SCMs. One can easily

compute the average number of queries for each cluster to find

the required number of SCMs per query. For example, when

B = 1000, |C| = 10000, and |W | = 40, 4 (= B|W |/|C|)
queries are expected for each cluster. Thus, for ANNA with

16 SCMs, we allocate four SCMs to a single query.

B. ANNA Execution with Optimization

Figure 7 visualizes the timeline for each compute module

in ANNA (i.e., CPM and multiple SCMs) as well as its

memory system in a steady-state (i.e., Step 2 and 3 of

the search process outlined in Section III-A). When the

SCMs perform similarity computation for the ith cluster

(takes |Ci|M/Nu cycles), multiple things happen in parallel.

First, the CPM works on lookup table construction for the

(i + 1)th cluster in the case of the L2 distance similarity

search, which requires the CPM to compute the lookup table

for every cluster. Constructing a lookup table takes k∗D/Ncu

cycles and when there exist Nscm SCM modules each

running a different query, the CPM needs to construct Nscm

separate lookup tables in NscmDk∗/Ncu cycles. Meanwhile,

on the memory side, each top-k unit in SCMs store the

intermediate top-k results from its previous operations to

the main memory and load the intermediate top-k results

from the main memory for its upcoming operations. The

memory traffic is 2kNSCM · 5B, since each top-k unit in

SCM loads/stores k entries which are 5B each (3B for vector

ID, 2B for similarity score). Also, the EFM prefetches the

encoded vectors for the cluster, which are |Ci+1| encoded

vectors each represented with M identifiers that are log2 k
∗

bits each. Overall, the computation time for the specified

time period in the figure is max(Nscmk∗D/Ncu, |Ci|M/Nu)
cycles, and 10kNSCM+(M log2 k

∗/8)·|Ci+1| bytes needs to

be fetched during this time. One should carefully set ANNA

design parameters (e.g., Nu, Ncu, Nscm) so that the system

is not heavily bottlenecked by computations or memory

accesses.
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V. EVALUATION

A. Methodology

Dataset. We evaluate several representative similarity search

datasets: SIFT1M [37] (N=1M, D=128, L2 Distance),

Deep1M [38] (N=1M, D=96, L2 Distance), GloVe [39]

(N=1M, D=100, Inner Product), SIFT1B [37] (N=1B, D=128,

L2 Distance), Deep1B [38] (N=1B, D=96, L2 Distance), and

TTI1B [40] (N=1B, D=128, Inner Product). In general, each

vector within these datasets represents an embedding of an

image feature or a word.

Software ANNS Implementations. We utilize two repre-

sentative open-source implementations of PQ-based simi-

larity search algorithms: Facebook Faiss [12] and Google

ScaNN [13]. Both algorithms utilize different objective

functions to train codebook and thus generate different

codebooks as well as the encoding for each database vector.

Faiss has both CPU and GPU implementations, and ScaNN

only has CPU implementation. We train each dataset for each

algorithm across varying configurations and obtain trained

models where each is a set of i) a list of centroids, ii)

codebooks, and iii) encoded vectors. We run Faiss or ScaNN

similarity search with the trained models on 8-core Intel

i7-7820X with 128GB memory (both Faiss and ScaNN) and

NVIDIA V100 GPU [41] with 32GB memory (Faiss) to

measure their performance, energy consumption (measured

with Intel RAPL & nvprof), and model recall X@Y (i.e.,

the portion of retrieved top X items among submitted Y
candidates). Specifically, throughout the evaluation, we utilize

the following search configurations: Faiss16 (CPU), Faiss256

(CPU), Faiss256 (GPU), and ScaNN16 (CPU). Here, the

number after Faiss or ScaNN (i.e., 16 or 256) represents

the k∗ value that the configuration utilizes. ScaNN does not

support k∗ = 256 configuration, and FaissGPU does not

support k∗ = 16 configuration since their implementations

are tightly coupled with the specific k∗. Throughout the

experiment, we use |C| = 10000 and |C| = 250 for billion-

scale and million-scale datasets, respectively, and M varies

across experiments.

ANNA Evaluation Methodology. For performance com-

parison of ANNA with the software implementations, we

implement a custom cycle-level simulator for ANNA. We

evaluate four ANNA configurations, each utilizing the trained

model from the corresponding software implementations.

We compare the throughput/latency of queries at a given

search recall, which is our quality metric. Each ANNA

configuration is assumed to be paired with the memory

system providing the 64GB/s bandwidth, which is identical

to the evaluated CPU-based system’s memory bandwidth.

For the area and energy evaluation, we implement the ANNA

accelerator with Chisel HDL [42], and perform functional

verification with Synopsys VCS. Then, we synthesize RTL

implementations of the ANNA with the TSMC 40nm GP

standard cell library with 1GHz frequency to obtain its

area and power consumption. Then, we post-process power

consumption from each component to obtain the system

energy consumption. ANNA design parameter is set as

follows: Ncu = 96, NSCM = 16, and Nu = 64. ANNA

can support both k∗ = 16 and k∗ = 256.

B. Performance Evaluation

Throughput Improvements. Figure 8 shows the throughput

comparison of ANNA and several software ANNS imple-

mentations across different configurations and workloads.

Each configuration is represented as a solid or a dotted line

because the model recall changes across user-specified search

parameter W , the number of clusters inspected. The higher

W means higher recall at the expense of lower throughput.

The upper six plots in Figure 8 show the results for 4:1

compression ratio, meaning that the main memory needs

to hold one-fourth of the original data size, which is 0.5N
bytes. For k∗ = 256 configurations which represent a single

vector element as log2k
∗ = 8 bits, M = D/2 is utilized to

compress the data by 4×. On the other hand, for k∗ = 16
configurations, which represent a vector element as 4 bits,

M = D is utilized to compress the data by 4×. Similarly,

the lower six plots in Figure 8 show the results for the 8:1

compression ratio. For that case, the smaller M (e.g., D/4)

is utilized to further compress the data. In general, a higher

compression rate trades off model recall for less memory

usage.

The figure shows that ANNA achieves substantial speedup

over CPU or GPU implementations across varying recalls.

Among various CPU implementations, we find that Faiss256

(CPU) achieves lower performance than other CPU imple-

mentations. This is because Faiss16 (CPU) and ScaNN16

(CPU) utilize low-level code optimizations to pin 16-entry

lookup tables on vector registers. On the other hand, when

k∗ = 256, 256-entry lookup tables do not fit on vector

registers, and thus the Faiss256 (CPU) achieves much lower

speedup. Between Faiss16 (CPU) and ScaNN16 (CPU),

Faiss16 (CPU) achieves better performance since Faiss16

(CPU) implementation processes queries in a way that is

similar to ANNA memory traffic optimization represented

in Figure 5. ANNA implementation of Faiss16 outperforms

Faiss16 (CPU) while consuming a much smaller area and

energy (presented in the following section).

The major drawback of Faiss16 or ScaNN16 configuration

is that the use of k∗ = 16 sometimes fails to achieve high

recall on challenging scenarios. For example, on Deep1B

dataset (8:1 compression ratio), all k∗ = 16 configurations

cannot achieve recall beyond 0.9. Moreover, although not

presented in the figure, those configurations fail to achieve

0.5 recall on 16:1 compression ratio scenarios for the same

dataset. The same issue is observed in TTI1B dataset (8:1

compression ratio), but only with Faiss16 in this case. On

the other hand, Faiss256 (CPU) can achieve substantially

better maximum recall, but is much slower. Unlike those
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Figure 8. Throughput Comparison of ANNA and Various Software ANNS Implementations on CPU/GPU. X-axis is recall 100@1000 (portion of true top
100 items included in 1000 candidates obtained by ANNS algorithms). Y-axis represents the queries processed per second in a log scale. At the bottom of
each plot, we compare each ANNA configuration with its corresponding software implementation and report the geomean speedup. Three numbers below
plots represent the QPS of exhaustive, exact nearest neighbor search on ScaNN (CPU), Faiss (CPU), and Faiss (GPU), respectively.

software implementations, Faiss256 (ANNA) can provide a

very high recall and throughput at the same time. Finally,

Faiss256 (GPU) shows very promising performance in some

cases. However, this is because the V100 GPU has 900 GB/s

memory bandwidth. For the fair comparison, we compare

Faiss256 (GPU) with the Faiss 256 (ANNA ×12), which

utilizes twelve ANNA instances, each paired with a 75GB/s

memory system. It is clear that ANNA ×12 achieves a

substantially larger throughput than the V100 GPU.

Figure 9. Latency Comparison of ANNA and Various Software ANNS
Implementations. Y-axis represents the latency for a single query represented
in a log scale. Lower is better. (4:1 compression ratio).

Impact of ANNA Memory Traffic Optimization. We

compare the throughput of ANNA without optimization and

ANNA with memory traffic optimization (Section IV). On

average (across multiple datasets), ANNA with the mem-

ory traffic optimization achieves 5.1×/5.0×/6.9× through-

put compared to ANNA without the optimization for

ScaNN16/Faiss16/Faiss256 configurations on 4:1 compres-

sion rate cases, respectively. Similarly, the extra speedup

from optimization is 3.9×/3.9×/4.6× on cases with the 8:1

compression ratio. Memory traffic optimization reduces the

total amount of memory traffic, and significantly improves

performance on scenarios where the throughput is memory-

bound. The additional performance gains are greater at the 4:1

compression ratio as it generates more memory traffic than

8:1 compression ratio, and thus it is more memory bandwidth-

bound. It is also possible to apply the idea of ANNA memory

traffic optimization to software schemes. As discussed before,

Faiss16 (CPU) already utilizes a conceptually similar data

reuse optimization technique to achieve better performance

than ScaNN16 (CPU). However, such techniques are often

very challenging to implement on CPUs since they lack a

mechanism to pin the loaded data to their on-chip memory

(i.e., cache).

Latency Improvements. Figure 9 compares the average

latency of processing a single query between ANNA and

the other workloads on configurations whose compression

ratio is 4:1. The figure shows that ANNA enables very

low-latency processing of similarity search queries. For

example, ANNA achieves high recall (0.8+) at sub-ms

latency in billion-scale datasets. On the other hand,

fastest CPU/GPU implementations achieve such recall

around 5-10ms latency. Overall, ANNA reduces an

average query latency by 10.5×/10.7×/56.2×/13.5× over

ScaNN16(CPU)/Faiss16(CPU)/Faiss256(CPU)/Faiss256(GPU),

respectively. This demonstrates that ANNA exploits intra-

query parallelism more effectively than the others.
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Table I
AREA AND (PEAK) POWER OF ANNA.

Module Name Area
(mm2)

Peak
Pwr(W)

Codebook/Cluster Processing Module 1.17 0.391
Encoded Vector Fetch Module 2.87 1.065

Similarity Computation Module (16×) 13.30 3.795
Memory Access Interface (MAI) 0.17 0.147

ANNA Accelerator 17.51 5.398
ANNA Accelerators (12×) 210.12 64.776

1773.2 2744.9 1668.9 2269.0 2105.6 3494.9

Figure 10. Normalized Energy Efficiency of ANNA over Corresponding
CPU/GPU Implementations. (4:1 compression ratio, W = 32 configuration).

C. Area/Energy Evaluation

Area. Table I reports the ANNA accelerator area usage. We

find that a large portion of ANNA modules’ area results from

their SRAM structures. A single ANNA accelerator requires

a 17.51mm2 area at 40nm technology. In comparison, the

evaluated CPU die size is 325.4mm2 at 14nm technology [43]

(effectively 151× larger), and the GPU die size is 815mm2

at 12nm technology [41] (effectively 517× larger).

Power and Energy Consumption. Table I shows that

a single ANNA accelerator consumes about 5.398W at

its peak. In practice, not all modules are fully utilized

at the same time, and thus the actual power usage (2-

3W) is lower than the peak. We also measure the GPU

and CPU power consumption. Their power vary across

datasets and configurations, but on average, the CPU utilizes

116W/139W power (ScaNN/Faiss), and the GPU utilizes

151.8W power during their operations. Figure 10 presents

the energy efficiency comparison between ANNA accelerator

and corresponding CPU/GPU implementations on a specific

configuration. Combining the substantially lower power

consumption and runtime reduction, ANNA achieves orders

of magnitudes energy efficiency improvements (97×+ across

all configurations) over both CPU and GPU. The main

sources of energy efficiency are i) the use of specialized

computation modules and memory structures, ii) the use of

dataflow pipeline, and iii) efficient data reuse.

VI. RELATED WORK

Hardware Acceleration of Nearest Neighbor Search. Ab-

delhadi et al. [44] design specialized FPGA implementation

for PQ-based ANNS, exploiting the large on-chip memory

on FPGA. This design achieves high throughput on a million-

scale dataset whose compressed vectors fit in on-chip buffer,

but is not readily applicable to billion-scale datasets. Zhang

et al. [45] also present FPGA-accelerated ANNS, which

achieves 50K QPS for 0.94 recall (1@10) on SIFT1M dataset.

However, the configuration used for this result cannot achieve

high recall (e.g., over 90%) for most of the billion-scale

datasets. Note that, for a similar recall on the same dataset,

ANNA achieves around 256K QPS with a single accelerator

instance, which uses multiple orders of magnitude smaller

area, energy, and on-chip SRAM.

Both FPGA implementations lack ANNA’s data reuse

optimization presented in Section IV and thus cannot

efficiently utilize the limited off-chip memory bandwidth.

Moreover, they use their own ANNS mechanism customized

for their hardware. The metric performance of those custom

mechanisms is not verified as rigorously as widely known

software implementations like ScaNN and Faiss. In contrast,

ANNA presents a hardware accelerator that is compatible

with both ScaNN and Faiss while achieving much higher

energy efficiency and overall speedups. Gemini APU [46]

is a proprietary architecture that utilizes LSH-based ANNS.

Their white paper states that it achieves 800 QPS for 0.92

recall (1@160) on Deep1B dataset, whereas ANNA achieves

over 4096 QPS for a similar recall.

Note that a fair and extensive quantitative comparison of

the ANNS hardware accelerators is quite difficult due to the

throughput-recall tradeoff. For instance, a configuration with

a relatively high compression ratio can often achieve a high

throughput, but a maximum recall that can be reached by

such a configuration is relatively low. To make a meaningful

comparison of hardware platforms, it is best to evaluate the

performance of the same search configuration (e.g., M , k∗,
|W |, etc.) across different hardware as in Section V.

In addition, several prior works accelerate NNS in hard-

ware, which are not directly comparable to our work. For

example, Tigris [47] is an academic work on accelerating

KD-tree ANNS. The presented implementation is specific

to a point cloud registration task, which involves NNS for

3-dimensional data. KD-tree-based ANNS is known to have

a very limited search accuracy for high-dimensional data, and

thus the presented hardware cannot be utilized for similarity

search on billion-scale embeddings where each vector has

over 100-dimensions. Also, Sun et al. [48] proposes a DSVS

algorithm and FPGA-based design for 3-dimensional NNS

for a similar task. As with KD-tree ANNS, the presented

DSVS algorithm is not suitable for high-dimensional data.

Danopoulos et al. [49] utilizes high-level-synthesis-based

hardware to accelerate general matrix multiplication (gemm)

in kmeans clustering algorithm, which is used for the NNS

index construction that needs to be performed prior to the

search process. Specifically, it targets to accelerate the process

of obtaining centroid vectors (i.e., c(0), ... ,c(|C|−1)), however

ANNA targets the search process that happens after obtaining

centroid vectors and codebooks is done. Thus, this work, as

well as other gemm accelerators, are orthogonal to ANNA and

are not applicable to the PQ-based ANNS query processing.
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Finally, several prior work [50]–[52] explore the hardware

acceleration of exact nearest-neighbor search. Even with the

hardware support, exhaustive searches are not a practical

approach for billion-scale datasets because they require an

excessive amount of computation, off-chip memory accesses,

and energy consumption.

ANNS Techniques. ANNS on software is a well-studied topic

with a wide range of related works. Graph-based ANNS [18],

[19], [28], [29] exploit nearest neighbor graph, a graph

structure whose each node is a vector that is connected

to its nearby nodes. Although those algorithms achieve

high performance on million-scale datasets [53], they are

impractical for billion-scale searches as they require a large

graph to be resident in memory. There exist other ANNS

techniques such as ones that utilize tree-structures [26],

[54] or locality-sensitive-hashing [16], [17], [55], but these

algorithms exhibit lower performance than alternatives [53].

There exist several variants of the product quantization-based

ANNS algorithms which aim to improve the codebook quality.

Improving codebook quality is also critical for improving the

search performance, because high-quality codebooks require

inspection of a smaller number of database vectors while

maintaining a high recall. For that purpose, ScaNN [13]

utilizes a novel object function, DPQ [32] utilizes deep-

learning-based training, and OPQ [31] applies rotation to

the original database. ANNA can support all these variations

since their computation pattern for the search remains the

same. ANNA can also be readily extended to support other

PQ variations such as AQ [56], which utilizes M identifiers

with each associated with D-dimensional codeword. The

ANNA implementation might need to be slightly extended to

support some PQ-based similarity search algorithms of the

future, but we expect the core concepts and components of

the ANNA design remains relevant since almost all PQ-based

similarity search algorithms operate in the similar manner:

load encoded data, exploit lookup tables to simplify the

similarity computation with the encoded data, and select top

k candidates to return.

VII. CONCLUSION

Nearest neighbor search is the critical operation for

recommender systems and semantic search, two of the most

critical applications in Internet services today. Such a high

demand, combined with the fact that this operation has a

relatively static computation and data access pattern, makes

this operation an ideal target for the specialized architecture.

Our work presents an effective specialized architecture named

ANNA and demonstrates that the deployment of specialized

architecture can significantly improve the performance and

energy efficiency of nearest neighbor search. We hope our

work provides the ground for the promising research direction:

designing the specialized architecture for ANNS.
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